This Datasheet is for the

1746-IV16

The 1746 -IV16 SLC 500 is a general purpose digital DC input module. Operating voltage for 1746 IV16 is $10 \ldots 30 \mathrm{~V}$ DC sink (source load). It contains 16 inputs. Backplane current load at 5 V is 85 mA . Input module houses a off-state current, max. of 1 mA .
http://www.qualitrol.com/shop/p-15796-1746-iv16.aspx

For further information, please contact Qualitrol Technical Support at

SLC 500 SYSTEMS

SELECTION GUIDE

Benefits

Powerful, yet affordable - SLC 500 programmable controllers provide excellent value with extensive capabilities to address a broad range of applications including
material handling, HVAC control, high speed assembly operations, small process control, simple motion control, and SCADA.

Modularity - Modular processes, power supplies, I/O, memory options, and communication interfaces allow for a configurable and expandable system. Configure your system for the number of I / O, the amount of memory, and the communication networks needed. Later, you can expand the system by adding I/O, memory, or communication interfaces.

Advanced instruction set - Includes indirect addressing, high level math capability, and a compute instruction.

Communication network versatility - Choose from on-board Ethernet, DH+, or DH-485, as well as options for ControlNet, DeviceNet, or Remote I/O communications.

Broad selection of I/O - Select from over 60 modules to control discrete, analog, and temperature signals. Third-party specialty modules are also available from Encompass partners to customize control solutions for your application needs.

Industrially hardened product - Designed to withstand the vibrations, thermal extremes, and electrical noise associated with harsh industrial environments.

Windows programming software - RSLogix 500 programming software maximizes productivity by simplifying program development and troubleshooting.

Allen-Bradley, ControlLogix, PLC-5, RSLinx, VersaView, Block I/O, CompactLogix, Flex, FlexLogix, MicroLogix, PanelView, RSLogix,
RSNetWorx and SLC are trademarks of Rockwell Automation
Trademarks not belonging to Rockwell Automation are the property of their respective companies.

SLC 500 System Overview

The Allen-Bradley SLC 500 is a small chassis-based family of programmable controllers, discrete, analog, and specialty I/O, and peripheral devices. The SLC 500 family delivers power and flexibility with a wide range of communication configurations, features, and memory options. The RSLogix 500 ladder logic programming package provides flexible editors, point-and-click I/O configuration, and a powerful database editor, as well as diagnostic and troubleshooting tools to help you save project development time and maximize productivity.

Typical Systems

With up to 64 K of configurable data/program memory available and over 60 types of
I/O modules, as well as a choice of networking options, the SLC system provides a powerful solution for stand-alone or distributed industrial control.

Local Systems

At minimum, a modular hardware SLC 500 control system consists of a processor module and I/O modules in a single 1746 chassis with a power supply.

You can configure a system with one, two, or three local chassis, for a maximum total of 30 local I/O or communication modules. You connect multiple local chassis together with chassis interconnect cables to extend the backplane signal lines from one chassis to another.

Chassis Interconnect Cable

Distributed Systems

More complex systems can use:
distributed I/O.
multiple controllers joined across networks.
I/O in multiple platforms that are distributed in many locations and connected over multiple I/O links.

Choose the processor module with the on-board communication ports you need. You optionally add modules to provide additional communication ports for the processor. For I/O in locations remote from the processor, you can choose between a ControlNet, DeviceNet, or Univeral I/O link. A communication interface module is required in both the local and remote chassis.

Depending upon the communication ports available on your particular SLC control
system, you can select operator interfaces that are compatible.

Laying Out the System

Lay out the system by determining the amount of I/O necessary, the network configurations, and the placement of components in each location. Decide at this time whether each chassis will have it's own controller or a networked solution.

SLC 500 processors are available with a large range of memory sizes (1 K through 64
K) and can control up to 4096 input and 4096 output signals. All modular processors except the SLC $5 / 01$ processor are capable of controlling remotely located I/O. By adding an I/O scanner module, you can use these processors to control/monitor these
remotely located I/O across ControlNet, DeviceNet, and Universal Remote I/O links. SLC 500 processors are single-slot modules that you place into the left-most slot of a 1746 I/O chassis. For I/O in a location remote from the processor, the I/O adapter is a single-slot module that you place in the left-most slot of the I/O chassis. SLC 500 modular systems provide separate power supplies which must be mounted directly on the left end of the 1746 I/O chassis.

The 1746 I/O chassis are designed for back-panel mounting and available in sizes of
4, 7, 10, or 13 module slots. The 1746 I/O modules are available in densities up to a
maximum of 32 channels per module.

Communications

Evaluate what communications need to occur. Knowing your communications requirements will help you determine which processor and which communications devices your application might require.

An SLC processor communicates across the 1746 backplane to 1746 I/O modules in the same chassis in which the processor resides. Various models of SLC processors have various on-board ports for communication with other processors or computers.
Also, separate modules are available to provide additional communication ports for communication with other processors, computers, and remotely located I/O. Each processor has one or two built-in ports for either EtherNet/IP, DH+, DH-485, or RS-232 (DF1, ASCII, or DH-485 protocol) communication.
In addition to the on-board ports available with SLC processors, you have the option
of providing another communication port for an SLC processor by adding a communication module.

Adapter modules for 1746 I/O are available for ControlNet and Universal Remote I/O links. An I/O adapter module in a chassis with I/O modules interfaces the I/O modules
with the I/O link for communication with a scanner port for a processor at another location.

SLC 500 Common Specifications

The following specifications apply to all SLC 500 modular components unless noted.

Description	Specification
Temperature	Operating: $0 \ldots .60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$
	Storage: $-40 \ldots 85^{\circ} \mathrm{C}\left(-40 \ldots 185{ }^{\circ} \mathrm{F}\right)$
Humidity	$5 . .95 \%$ without condensation
Vibration	Operating: 1.0 g at $5 \ldots .2000 \mathrm{~Hz}$
	Non-operating: 2.5 g at $5 . . .2000 \mathrm{~Hz}$
Shock	Operating: 30 g (3 pulses, 11 ms) - for all modules except relay contact
	Operating: 10 g (3 pulses, 11 ms) - for relay contact modules 1746-OWx and 1746-IOx combo
	Non-operating: $50 \mathrm{~g}, 3$ pulses, 11 ms
Free fall (drop test)	Portable, $2.268 \mathrm{~kg}(5 \mathrm{lb})$ or less at $0.762 \mathrm{~m}(30 \mathrm{in}$.$) , six drops$
	Portable, $2.268 \mathrm{~kg} \mathrm{(5} \mathrm{lb)} \mathrm{or} \mathrm{less} \mathrm{at} 0.1016 \mathrm{~m}$ (4 in.$)$, three flat drops
Safety	Dielectric Withstand: 1500V ac (Industry Standard - UL 508, CSA C22.2 No. 142)
	Isolation between Communication Circuits: 500 V dc
	Isolation between Backplane and I/O: 1500 V ac
	Flammability and Electrical Ignition: UL94V-0
Certification* or (when product or packaging is marke EN61000-6-4 European Un EN61131-2	UL Listed Industrial Control Equipment for Class I, Division 2, Groups A, B, C, D Hazardous Locations
	C-UL Listed Industrial Control Equipment for Class I, Division 2, Groups A, B, C, D Hazardous Locations
	Union 89/336/EEC EMC Directive, compliant with: dustrial Immunity hdustrial Emissions
	d) EN61000-6-2 Industrial Immunity Industrial Emissions ion 73/23/EEC LVD Directive, compliant with safety-related portions of: rogrammable Controllers
	C-Tick, Australian Radio Communications Act, compliant with: AS/NZS 2064 Industrial Emissions

* See the Product Certification link at http://ab.com for Declarations of Conformity, Certificates, and other certification details.

Use the following Checklist as a guide to completing your own system spegification.

spegifieation.	See
1 Select I/O Modules consider using an interface module or pre-wired 1492 cables use a spreadsheet to record your selections	page 8 page 33 page 85
2 Select Communication Modules/Devices determine your network communication requirements and select the necessary communication modules/devices include appropriate communication cables record your module/device selections on the system spreadsheet	$\begin{array}{\|l\|} \hline \text { page } 39 \\ \text { page } 40 \\ \text { page } 58 \\ \text { page } 85 \end{array}$
3 Select an SLC 500 Processor choose a processor based on memory, I/O, performance, programm requirements, and communication options	ing page 59
4 Select an SLC 500 Chassis determine the number of chassis and any interconnect cables requi based on the physical configuration of your system	${ }_{\text {ed }}$ page 64
5 Select an SLC 500 Power Supply use the power supply loading worksheet to ensure sufficient power your system consider future system expansion when selecting a power supply	page 68 or page 88
$6 \quad$ Select Programming Software select the appropriate package of RSLogix 500 Programming Softw your application	are for page 78

Step 1 - Select:

I/O modules - available in a variety of densities and voltage options. Some modules have diagnostic features, individually isolated inputs/outputs or electronic protection.
interface modules (IFMs) or prewired cables (optional)

1746 Digital I/O Modules

Selecting SLC 500 I/O Modules

Digital I/O modules, analog I/O modules, and specialty temperature, counting, process control, and BASIC language modules are available to help you create a custom solution for your application.

Digital I/O modules are available with $4,8,16$, or 32 channels and in a wide variety of I/O voltages (including AC, DC, and TTL). Combination modules with 2 inputs/2 outputs, 4 inputs/4 outputs, and 6 inputs/ 6 outputs are also available.

Terminals on the $4,8,12$, and 16 -channel modules have self-lifting pressure plates that accept two 14 AWG ($2 \mathrm{~mm}_{2}$) wires. LED indicators on the front of each module display the status of each I/O point.

32-channel I/O modules are equipped with a $40-\mathrm{pin}$, MIL-C-83503 type header and a removable wiring connector (1746-N3). The connector can be assembled with the wire type and length of your choice.

Output modules are available with solid-state AC, solid-state DC, and relay contact type outputs. High current solid-state output modules, catalog numbers 1746-OBP16, -OVP16, and -OAP12, have fused commons with a blown fuse LED indication. The 1746-OB16E, -OB6EI, and -OB32E modules provide electronic protection from short circuit and overload conditions.

Wiring of 16 and 32 -channel modules can also be accomplished with a bulletin 1492 interface module and pre-wired cable. All 16-channel I/O modules and catalog numbers 1746-OX8, -OBP8, -OAP12, 1746-IO12 are equipped with colorcoded removable terminal blocks.

Digital I/O Module Overview

Cat. No.	Voltage Category	I/O Points Description		For Detailed Specifications, See
DC Modules				
1746-IB8	24 V dc	8	Current Sinking DC Input Module	page 10 Sinking DC Input Modules
1746-IB16	24 V dc	16	Current Sinking DC Input Module	
1746-IB32	24 V dc	32	Current Sinking DC Input Module	
1746-ITB16	24 V dc	16	Fast Response DC Sinking Input Module	
1746-IC16	48 V dc	16	Current Sinking DC Input Module	
1746-IH16	125 V dc	16	Current Sinking DC Input Module	
1746-IV8	24 V dc	8	Current Sourcing DC Input Module	page 10 Sourcing DC Input Modules
1746-IV16	24 V dc	16	Current Sourcing DC Input Module	
1746-IV32	24 V dc	32	Current Sourcing DC Input Module	
1746-ITV16	24 V dc	16	Fast Response DC Sourcing Input Module	
1746-IG16	5 V dc	16	Current Sourcing TTL Input Module	
1746-OB6EI	24 V dc	6	Electronically Protected Isolated Sourcing DC Out Module	ut page 11 Sourcing DC Output Modules
1746-OB8	24 V dc	8	Current Sourcing DC Output Module	
1746-OB16	24 V dc	16	Current Sourcing DC Output Module	
1746-OB16E \ddagger	24 V dc	16	Electronically Protected Current Sourcing DC Outp Module	
1746-OB32	24 V dc	32	Current Sourcing DC Output Module	
1746-OB32E	24 V dc	32	Electronically Protected Current Sourcing DC Outp Module	
1746-OBP8 \ddagger	24 V dc	8	High Current Sourcing DC Output Module	
1746-OBP16*	24 V dc	16	High Current Sourcing DC Output Module	
1746-OV8	24 V dc	8	Current Sinking DC Output Module	page 11 Sinking DC Output Modules
1746-OV16	24 V dc	16	Current Sinking DC Output Module	
1746-OV32	24 V dc	32	Current Sinking DC Output Module	
1746-OVP16*	24 V dc	16	High Current Sinking DC Output Module	
1746-OG16	5 V dc	16	Current Sinking TTL Output Module	
AC Modules				
1746-IA4	$100 / 120 \mathrm{~V}$ ac	4	120 V ac Input Module	page 12 AC Input Modules
1746-IA8	$100 / 120 \mathrm{~V}$ ac	8	120 V ac Input Module	
1746-IA16	$100 / 120 \mathrm{~V}$ ac	16	120 V ac Input Module	
1746-IM4	200/240V ac	4	240 V ac Input Module	
1746-IM8	200/240V ac	8	240 V ac Input Module	
1746-IM16	200/240V ac	16	240 V ac Input Module	
1746-OA8	$120 / 240 \mathrm{~V}$ ac	8	120/240V ac Output Module	page 12 AC Output Modules
1746-OA16	$120 / 240 \mathrm{~V}$ ac	16	120/240V ac Output Module	
1746-OAP12*	$120 / 240 \mathrm{~V}$ ac	12	High Current 120/240V ac Output Module	
AC/DC Modules				
1746-IN16	$24 \mathrm{Vac} / \mathrm{dc}$	16	24 V ac/dc Input Module	page 12 AC Input Modules
1746-OW4*	ac/dc Relay	4	Relay (Hard Contact) Output Module	page 13 Relay Output Modules
1746-OW8*	ac/dc Relay	8	Relay (Hard Contact) Output Module	
1746-OW16*	ac/dc Relay	16	Relay (Hard Contact) Output Module	
1746-OX8*	ac/dc Relay	8	Isolated Relay Output Module	
1746-IO4*	120 V ac (Inputs) 100/120V ac (Relay Contact Outputs)	$\begin{aligned} & 2 \text { In } \\ & 2 \text { Out } \end{aligned}$	Combination Input/Output Module	page 14 Combination I/O Modules
1746-IO8*	120 V ac (Inputs) 100/120V ac (Relay Contact Outputs)	$\begin{aligned} & 4 \text { In } \\ & 4 \text { Out } \end{aligned}$	Combination Input/Output Module	
1746-IO12*	120 V ac (Inputs) 100/120V ac (Relay Contact Outputs)	$\begin{aligned} & 6 \text { In } \\ & 6 \text { Out } \end{aligned}$	Combination Input/Output Module	
1746-IO12DC \ddagger	24 V dc (Inputs) 100/120 V ac (Relay Contact Outputs)	$\begin{array}{\|l\|} \hline 6 \text { In } \\ 6 \text { Out } \end{array}$	Combination Input/Output Module	

[^0]
Sinking DC Input Modules

* Max. Points ON Simultaneously: $16 @ 146 \mathrm{~V}$ dc and $30^{\circ} \mathrm{C}\left(86{ }^{\circ} \mathrm{F}\right)$; $12 @ 146 \mathrm{~V}$ dc and $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right) ; 14 @ 132 \mathrm{~V}$ dc and $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$; $16 @ 125 \mathrm{~V}$ dc and $60{ }^{\circ} \mathrm{C}\left(140{ }^{\circ} \mathrm{F}\right)$

If the input module is connected in parallel with an inductive load, use surge suppression across the load to protect the input module from damage caused by reverse voltage. Refer to the SLC 500 Modular Hardware Style User Manual, publication 1747-UM011, for more information on surge suppression.

Sourcing DC Input Modules

Specifications	1746-IG16	1746-IV8	1746-IV16	1746-IV32	1746-ITV16
Number of Inputs	16	8	16	32	16
Points Per Common	16	8	16		16
Voltage Category	5 V dc	24 V dc	24 V dc	24 V dc	24 V dc
Operating Voltage Range	4.5...5.5V dc *	$10 . . .30 \mathrm{~V}$ dc		$15 . . .30 \mathrm{~V}$ dc @ $50^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$ $15 . . .26 .4 \mathrm{~V}$ dc @ $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	$10 . .30 \mathrm{~V} \mathrm{dc}$
Backplane Current (mA) at 5	1140 mA	50 mA	85 mA	50 mA	85 mA
Backplane Current (mA) at 24	40 mA	0 mA	0 mA	0 mA	0 mA
Voltage, Off-Statelnput, Max	2..5.5V do	5.0 Vdo	5.0 Vdo	5.0 Vdo	5.0 Vdo
Nominal Input Current	3.7 mA @ 5V dc	8 mA @ 24V dc		5.1 mA @ 24V dc	8 mA @ 24 V dc
Current, Off-State Input, Max	4.1 mA	1 mA		1.5 mA	1.5 mA
Signalon Delay, Max	0.25 ms max	8 ms max		3 ms max	0.30 ms max
Signal Off Delay, Max	0.50 ms max	8 ms max		3 ms max	0.50 ms max

* 50 mV peak-to-peak ripple (max.)

Typical signal delay for this module: $\mathrm{ON}=0.1 \mathrm{~ms}, \mathrm{OFF}=0.25 \mathrm{~ms} @ 24 \mathrm{~V} \mathrm{dc}$.

Sinking DC Output Modules

Specifications	1746-OG16	1746-OV8	1746-OV16	1746-OV32	1746-OVP16
Number of Outputs	16	8	16	32	16
Points Per Common	16	8	16	16	16
Vottage Category	$5 \forall d c$	24Vdc			
Operating Veltage Range -	4.5..5.5V-de*	$10 . .50 \mathrm{~V}$ de			
Backplane Current (mA) at 5V	180 mA			$5 . .50 \mathrm{~V}$ dc	20.4...26.4V dc
Backplane Current (mA) at 24V	0 mA	0 mA	270 mA	190 mA	250 mA
Voltage Drop, On-State Output, Ma	X-	1.2V @ 1.0 A	0 mA	$\begin{aligned} & 0 \mathrm{~mA} \\ & 1.2 \mathrm{~V} @ 0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA} \\ & 1.0 \mathrm{~V} @ 1.0 \mathrm{~A} \end{aligned}$
Load Current, Min. teakage -urrent, Off-State Output,	0.15 mA	1 mA	1.2V@0.5A		
-Signal On Delay, Max (resistive loa	d. $2 \times \mathrm{mA}$	0.1 ms	1 mA *	1 mA	$1 \mathrm{~mA}+$
Signal Off Delay, Max (resistive loa	d) 50 ms	1.0 ms	0.1 ms	0.1 ms	$0.1 \mathrm{~ms} \ddagger$
		$8.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$	1.0 ms	$\begin{aligned} & 1.0 \mathrm{~ms} \\ & 8.0 \mathrm{~A} @ 0 \ldots 0^{\circ} \mathrm{C} \\ & \left(32 \ldots .140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~ms} \\ & 6.4 \mathrm{~A} @ 0 . .00^{\circ} \mathrm{C} \\ & \left(32 \ldots .140^{\circ} \mathrm{F}\right) \end{aligned}$
		$4.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$			
Continuous Current per Module	N/A				
Continuous Current per Point	24 mA	$\begin{aligned} & 1.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0.5 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \S \end{aligned}$	$\begin{aligned} & 0.50 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0.25 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \S \end{aligned}$	$\begin{aligned} & 0.50 \mathrm{~A} @ 30^{\circ} \mathrm{C} \\ & 0.25 \mathrm{~A} @ 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 1.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)> \end{aligned}$
Surge Current per Point for 10 ms	N/A	3.0 A		$\begin{aligned} & 1.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 1.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$	4.0 A

* 50 mV peak to peak ripple (max).

The 1746-OVP16 module features a fused common and blown fuse LED indicator.
\ddagger Fast turn-off modules provide fast OFF delay for inductive loads. Fast turn-off delay for inductive loads is accomplished with surge suppressors on this module. A suppressor at the load is not needed unless another contact is connected in series. If this is the case, a 1 N4004 diode should be reverse wired across the load. This defeats the fast turn-off feature. Comparative OFF delay times for 1746-OB8, 1746-OV8 and fast turn-off modules, when switching Bulletin 100-B110 (24 W sealed) contactor, are: 1746-OB8 and 1746-OV8 modules OFF delay $=152 \mathrm{~ms}$; fast turnoff modules OFF delay $=47 \mathrm{~ms}$.
§ Recommended surge suppression: For transistor outputs, when switching 24 V dc inductive loads, use a 1 N4004 diode reverse-wired across the load. Refer to the SLC 500 Modular Hardware Style User Manual, publication 1747-UM011, for more information on surge suppression.
$*$ To limit the effects of leakage current through solid-state outputs, a loading resistor can be connected in parallel with your load. For transistor outputs, 24 V dc operation, use a $5.6 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}$ resistor.
$>$ Fast off-delay for inductive loads is accomplished with surge suppressors on the 1746-IB6EI and 1746-OBP8 series B and later, 1746-OB16E series B and later, 1746-OBP16 and 1746OVP16 modules. A suppressor at the load is not needed unless another contact is connected in series. If this is the case, a 1 N4004 diode should be reverse-wired across the load. This defeats the fast turn-off feature.

Repeatability is once every $1 \mathrm{~s} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$. Repeatability is once every $2 \mathrm{~s} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
Surge current = 32 A per module for 10 ms .

Sourcing DC Output Modules

Specifications 1746-OB	6 EI	1746-OB8	1746-OB16	1746-OB16E	1746-OB32	1746-OB32E 1	46-OBP8*	1746-OBP16
Number of Outputs 6 Electron		8	16	16 Electronically Protected	328	ectronically		16
Protected Points Per Common Individua	ly	8	16	16	16 Pro	16	4	16
Voltage Category 24 V वc - Operating Voltage Range10...30 Backplane Current (mA) at 5 V 46	-de- $10 \ldots 50 \mathrm{~V} \mathrm{dc}$			$10 . . .30 \mathrm{~V} \mathrm{dc}$	$5 . .50 \mathrm{~V}$ dc $10 \ldots . .30 \mathrm{~V} \mathrm{dc}$		20.4...26.4V dc	
	$\begin{aligned} & \mathrm{Clol}-\mathrm{c} \\ & \mathrm{~mA} \end{aligned}$	135 mA	280 mA	135 mA	190 mA		135 mA	250 mA
Backplane Current (mA) at 24V0	nA	$\begin{aligned} & 0 \mathrm{~mA} \\ & 1.2 \mathrm{~V} @ 1.0 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \mathrm{~mA} \\ \hline 1.2 \mathrm{~V} @ 0.5 \mathrm{~A} \\ \hline \end{array}$	0 mA$1.0 \mathrm{~V} @-.5 \mathrm{~A}$	$\begin{aligned} & 0 \mathrm{mAO} \mathrm{~mA} \\ & 1.2 \mathrm{~V} @-5.5 \end{aligned}$		0 mA$1.0 \mathrm{~V} @ 2.0 \mathrm{~A}$	$0 \mathrm{~mA}$
Voltage Drop, On-State Output, Max. 1.0V @ 2.0 A					1 mA 1 mA			$1.0 \mathrm{~V} @ 1.0 \mathrm{~A}$
Load Current, Min. 1 mAteakage Current, Off-State Outpu		1 mAS	1 mAS	$1 \mathrm{mA§}$	1 mA 1 mA		1 mAS	$\begin{array}{\|l} 1 \\ \hline 1 \mathrm{~mA} \\ \hline 1 \mathrm{mAS} \end{array}$
		0.1 ms1.0 ms$8.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$$4.0 \mathrm{A@} @ 0^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{O}\right.$	0.1 ms	$1.0 \mathrm{~ms} *$	$0.1 \mathrm{~ms} 1.0 \text { 巾 }$		$1.0 \mathrm{ms*}$	0.1 ms*
-Signal-On Delay, Max (resistive tolad) 1.0 ms *								1.0 ms
12.0 A @	O. 60							6.4 A @ 0... $60^{\circ} \mathrm{C}$
Continuous Current per Module ${ }^{\circ} \mathrm{C}\left(32^{\circ}\right.$.	$140{ }^{\circ} \mathrm{F}$)			8.0 A @ 0... $60{ }^{\circ} \mathrm{C}(32 .$.	. $140{ }^{\circ} \mathrm{F}$)			(32..140 ${ }^{\circ} \mathrm{F}$)
Continuous Current per Point	$\begin{aligned} & 2.0 \mathrm{~A} @ 0 . . .60^{\circ} \mathrm{C} \\ & \left(32^{\circ} \ldots 140^{\circ} \mathrm{F}\right) \ddagger \mathrm{o} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 50 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 0.50 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0.25 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right. \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0.50 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right. \end{aligned}$	$\begin{aligned} & \text { ¢. } 50 \mathrm{~A} @ 30 \\ & \dagger) \ddagger 0.25 \mathrm{~A} @ \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C}\left(86{ }^{\circ} \mathrm{F}\right) \\ & 060^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~A} @ 0 \ldots 60^{\circ} \mathrm{C} \\ & \left(32 \ldots 140{ }^{\circ} \mathrm{F}\right) \neq 1.0 \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86{ }^{\circ} \mathrm{F}\right) \\ & \mathrm{A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \ddagger \end{aligned}$
Surge Current per Point for 10 ms	- 4.0 A	3.0 A		2.0 A	$\begin{aligned} & 1.0 \mathrm{~A} @ 30 \\ & 1.0 \mathrm{~A} @ 60 \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$	4.0 A	

* Fast turn-off modules provide fast OFF delay for inductive loads. Comparative OFF delay times for 1746-OB8, 1746-OV8 and fast turn-off modules, when switching Bulletin 100 -B110 (24 W sealed) contractor, are: 1746-OB8 and 1746-OV8 modules OFF delay $=152 \mathrm{~ms}$; fast turn-off modules OFF delay $=47 \mathrm{~ms}$.
The 1746-OBP16 module features a fused common and blown fuse LED indicator.
\ddagger Fast off-delay for inductive loads is accomplished with surge suppressors on the 1746-IB6EI, 1746-OBP8 series B and later, 1746-OB16E series B and later, 1746-OBP16, and 1746-OVP16 modules. A suppressor at the load is not needed unless another contact is connected in series. If this is the case, a 1 N4004 diode should be reverse-wired across the load. This defeats the fast turn-off feature.
\S To limit the effects of leakage current through solid-state outputs, a loading resistor can be connected in parallel with your load. For transistor outputs, 24 V dc operation, use a $5.0 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}$ resistor on 1746-OB8, 1746-OB16, and 1746-OB16E modules and a $5.6 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W}$ resistor on 1746 -OB6EI, 1746-OBP8, 1746-OBP16 modules.
* An external fuse can be used to protect this module from short circuits. Recommended fuse is SANO MQ 4-3.15 A, 5x20 mm.
$>$ Repeatability is once every $1 \mathrm{~s} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$. Repeatability is once every $2 \mathrm{~s} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

AC Input Modules

Specifications	1746-IA4	1746-1A8	1746-IA16	1746-IM4	1746-IM8	1746-IM16	1746-IN16
Number of Outputs	4	8	16	4	8	16	16
Points Per Common	4	8	16	4	8	16	16
Voltage Category	1001420 Vac			200240 Vac			24 V ac/dc 10 3 3 V ac
Operating Voltage Range	$85 . .132 \mathrm{~V}$ ac @ 47... 63 Hz			170... 265 V ac @ 47... 63 Hz			$\begin{aligned} & 10 \ldots . .30 \mathrm{~V} \mathrm{dc} \\ & 85 \mathrm{~mA} \end{aligned}$
Backplane Current (mA) at 5 V	35 mA	50 mA	85 mA	35 mA	50 mA	85 mA	0 mA 3.0 V dc
Backplane Current (mA) at 24V	0 mA	3.0 V ac					
Voltage, Off-State Input, Max.	30 Vac			50 Vac			
Nominal Input Current	12 mA @ 120V ac			12 mA @ 240V ac			$\begin{aligned} & 8 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{dc} \\ & 8 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{ac} \end{aligned}$
Current, Off-State Input, Max.	2 mA	$\begin{aligned} & 1 \mathrm{~mA}(\mathrm{dc}) \\ & 1 \mathrm{~mA}(\mathrm{ac}) \end{aligned}$					
Inrush Current, Max. *0.8 A				1.6 A			0.02 A (ac only)
Inrush Current Time Duration (max	.). 0.5 ms	15 ms max (dc)					
Signal On Delay, Max	35 ms max	25 ms (ac)					
Signal Off Delay, Max	45 ms max	$\begin{aligned} & 15 \mathrm{~ms} \max \text { (dc) } \\ & 25 \mathrm{~ms}(\mathrm{ac}) \end{aligned}$					

* An ac input device must be compatible with SLC 500 input circuit inrush current. A current limiting resistor can be used to limit inrush current. However, the operating characteristics of the ac input circuit are affected.

AC Output Modules

Specifications	1746-OA8	1746-OA16	1746-OAP12
Number of Outputs	8	16	12
Points Per Common	4	8	6*
Voltage Category	120/240V ac		
Operating Voltage Range	$85 . . .265 \mathrm{~V}$ ac @ $47 . . .63 \mathrm{~Hz}$		
Backplane Current (mA) at 5V	185 mA	370 mA	
Backplane Current (mA) at 24 V	0 mA	0 mA	0 mA
Voltage Drop, On-State Output, Max.	1.50V @ 1.0 A	$1.50 \mathrm{~V} @ 0.50 \mathrm{~A}$	1.2 V @ 2.0 A
Load Current, Min.	10 mA	10 mA	10 mA
Leakage Current, Off-State Output, M	2xmA	2 mA	2 mA
Surge Current per Point (max.) \ddagger	10.0 A for 25 ms		17.0 A for 25 ms >
Signal On Delay, Max (resistive load)	\$1 ms	1 ms	1 ms
Signal Off Delay, Max (resistive load)	\$11 ms	11 ms	11 ms
Continuous Current per Pointa	$\begin{aligned} & 1.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0.50 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 0.50 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0.25 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 1.25 \mathrm{~A} @ 55^{\circ} \mathrm{C}\left(1311^{\circ} \mathrm{F}\right) \\ & 1.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$
Continuous Current per Module	$\begin{aligned} & 8.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 4.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$		$\begin{aligned} & 9.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 6.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$

* The 1746-OAP12 module features a fused common and blown fuse LED indicator.

To limit the effects of leakage current through solid-state oututs, a loading resistor can be connected in parallel with your load. For 120 V ac operation, use a $15 \mathrm{k} \Omega, 2 \mathrm{~W}$ resistor. For 240 V ac operation, use a $15 \mathrm{k} \Omega, 5 \mathrm{~W}$ resistor
\ddagger Repeatability is once every $1 \mathrm{~s} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$. Repeatability is once every $2 \mathrm{~s} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
§ Triac outputs turn on at any point in the ac line cycle and turn off at ac line zero cross.

* Recommended surge suppression: For triac outputs when switching 120 V ac inductive loads, use Harris Metal-oxide Varistor, model number V220MA2A. Refer to the SLC 500 Modular

Hardware Style User Manual, publication 1747-UM011 for more information on surge suppression
> Surge current $=35 \mathrm{~A}$ per common for 10 ms .

Relay Output Modules

Specifications	1746-OW4	1746-OW8	1746-OW16	1746-OX8
Number of Outputs	4	8	16	8
Points Per Common	4	4	8	individually isolated
Voltage Category	ac/dc Relay			
Operating Voltage Range	$5 . . .125 \mathrm{~V}$ dc $5 . .265 \mathrm{~V}$ ac			
Backplane Current (mA) at 5V	45 mA	85 mA	170 mA	85 mA
Backplane Current (mA) at 24 V	45 mA	90 mA	180 mA	90 mA
Load Current, Min.	$10 \mathrm{~mA} @ 5 \mathrm{~V}$ dc			
Leakage Current, Off-State Output,	Max 0 mA	0 mA	0 mA	0 mA
Signal On Delay, Max (resistive load	dit 0 ms	10 ms	10 ms	10 ms
Signal Off Delay, Max (resistive load	dit 0 ms	10 ms	10 ms	10 ms
Continuous Current per Point \ddagger	See relay contact ratings			
Continuous Current per Module	8.0 A ac 8.0 A/Common	16.0 A ac 8.0 A/Common		*

* Limit continuous current per module so that module power does not exceed 1440 VA.

Certified for Class 1 Div 2 Hazardous Locations by CSA.
\ddagger Recommended surge suppression: for relay outputs, refer to SLC 500 Modular Hardware Style User Manual, publication 1747-UM011. Connecting surge suppressors across your external inductive load will extend the life of SLC relay contacts.

Relay Contact Ratings

Cat. No.	Maximum Volts		Amperes *		Amperes \ddagger Continuous	Volt-Amperes		
			Make	Break		Make	Break	
$\begin{aligned} & \text { 1746-OW4 } \\ & 1746-O W 8 \\ & 1746-O W 16 \end{aligned}$	ac	240 V ac	7.5 A	0.75 A	2.5 A	1800 VA	180 VA	
		120V ac	15 A	1.5 A				
		125 V de	0.22 A					
	dc	24 V dc	1.2 A		1.0 A	28 VA		
		$\begin{aligned} & 240 \mathrm{~V} \text { ac } \\ & 120 \mathrm{Vac} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~A} \\ & 30 \mathrm{~A} \end{aligned}$		2.0 A			
1746-OX8	ac	125 V dc	0.22 A	1.5 A	5.0 A	3600 VA	360 VA	
		24 V dc	1.2 A	3.0 A				
	dc				1.0 A	28 VA		
					2.0 A			

* Connecting surge suppressors across your external load extends the life of SLC 500 relay contacts. For recommended surge suppression when switching ac inductive loads, consult the SLC 500 Modular Hardware Style User Manual, publication 1746-UM011. Recommended surge suppression for switching 24V dc inductive loads is 1 N 4004 diode reverse wired across the load.

For dc voltage applications, the make/break ampere rating for relay contacts can be determined by dividing the 28 VA by the applied dc voltage. For example, $28 \mathrm{VA} / 48 \mathrm{~V}$ dc $=0.58 \mathrm{~A}$ for dc voltage applications less than 14 V , the make/break ratings for relay contacts cannot exceed 2 A .
\ddagger The continuous current per module must be limited so the module power does not exceed 1440 VA.

Combination I/O Modules

1746-SIM Input Simulator

1746 Analog I/O Modules

The 1746 -SIM Input Simulator is designed for use on 16 -channel 24 V dc sinking and sourcing modules with removable terminal blocks, including 1746-IB16, 1746-ITB16, 1746-IV16, 1746-ITV16, and 1746-IN16 modules. The input simulator provides 16 switches for simulating inputs to the SLC 500.

Analog I/O modules feature user-selectable voltage or current inputs, backplane isolation, removable terminal blocks, and diagnostic feedback.

The $1746-\mathrm{NI} 4,1746-\mathrm{NIO} 4 \mathrm{I}$, and $1746-\mathrm{NIO} 4 \mathrm{~V}$ input channels are filtered to reject high frequency noise and provide 14- to 16-bit (range-dependent) resolution.

All 4-channel analog output modules provide 14-bit resolution and a 2.5 ms conversion rate.

The 1746-FIO4I and 1746-FIO4V modules have less input filtering and can sense more rapidly changing inputs. However, their input resolution is only 12-bit. Because the input filter on the $1746-\mathrm{FIO} 4 \mathrm{I}$ or 1746 -FIO4V module may pass more electrical noise, you should thoroughly ground and shield the input transducer, its power supply, and cables.

The 1746-NI8 module provides high accuracy and fast analog signal conversion. The 1746-NI8, 1746-NI16I and 1746-NI16V modules are high density analog input modules that are software configurable.

The $1746-\mathrm{NO} 8 \mathrm{I}$ (current output) and $1746-\mathrm{NO} 8 \mathrm{~V}$ (voltage output) modules are high density, analog output modules that provide 8 individually configurable output channels with 16-bit resolution.

Analog I/O Module Overview

Cat. No.	Description	Voltage Category	For Specifications, See
1746-NI4	High Resolution (4) Analog Input Module	$-20 \ldots+20 \mathrm{~mA}$ (or) $-10 \ldots+10 \mathrm{~V}$ dc	page 16: General Input Specifications page 16: Current Loop Input Specifications page 17: Voltage Input Specifications
1746-NI8	High Resolution (8) Analog Input Module	$-20 \ldots+20 \mathrm{~mA}$ (or) $-10 \ldots+10 \mathrm{~V}$ dc	page 18: General Input Specifications page 18: Input Step Response page 19: Current Loop Input Specifications page 19: Voltage Input Specifications
1746-NI161*	High Resolution (16) Analog Input Module	$-20 \ldots+20 \mathrm{~mA}$	page 21: General Input Specifications page 22: Module Update Times
1746-NI16V *	High Resolution (16) Analog Input Module	-10...+10V dc	page 21: General Input Specifications page 22: Module Update Times
1746-NIO4I	High Resolution (2) Analog Input, (2) Analog Current Output Module	$-20 \ldots+20 \mathrm{~mA}$ (or) $-10 \ldots+10 \mathrm{~V}$ dc (Inputs) $0 . . .20 \mathrm{~mA}$ (Outputs)	page 16: General Input Specifications page 16: Current Loop Specifications page 17: Output Specifications
1746-NIO4V	High Resolution (2) Analog Input, (2) Analog Voltage Output Module	$20 \ldots+20 \mathrm{~mA}$ (or) $-10 \ldots+10 \mathrm{~V}$ dc (Inputs) $-10 \ldots+10 \mathrm{~V}$ dc (Outputs)	page 16: General Input Specifications page 17: Voltage Input Specifications page 17: Output Specifications
1746-FIO4I	(2) Fast Analog Input, (2) Analog Current Output Modu	$0 \ldots 20 \mathrm{~mA}$ (or) $0 . . .10 \mathrm{~V}$ dc (Inputs) 8... 20 mA (Outputs)	page 16: General Input Specifications page 16: Current Loop Specifications page 17: Output Specifications
1746-FIO4V	(2) Fast Analog Input, (2) Analog Voltage Output Modu	$0 \ldots 20 \mathrm{~mA}$ (or) $0 \ldots 10 \mathrm{~V}$ dc (Inputs) ${ }^{-10 \ldots+10 \mathrm{~V} \text { dc (Outputs) }}$	page 16: General Input Specifications page 17: Voltage Input Specifications page 17: Output Specifications
1746-NO4I	(4) Analog Current Output Module	0... 20 mA	page 17: Output Specifications
1746-NO4V	(4) Analog Voltage Output Module	$-10 . .+10 \mathrm{~V}$ dc	page 17: Output Specifications
1746-NO8I	(8) Analog Current Output Module	0... 20 mA	page 20: Output Specifications
1746-NO8V	(8) Analog Voltage Output Module	$-10 . .+10 \mathrm{~V}$ dc	page 20: Output Specifications

* Single-ended connections only.

4-Channel Analog I/O Modules

General Input Specifications for 4-Channel Modules

Cat. No	1746-N14	1746-N1041	1746-N104V	1746-Fl04I	1746-FlO4V
Backplane Current (mA) at 5	25 mA	55 mA	55 mA	55 mA	55 mA
Backplane Current (mA) at 24	V 85 mA	145 mA	115 mA	150 mA	120 mA
Number of Inputs	4	2	2	2	2
Backplane Isolation	500 V ac and 710 V dc withstand for 1 minute				
Step Response	60 ms			$100 \mu \mathrm{~s}$	
Conversion Method	sigma-delta modulation			successive approximation	
Converter Resolution	16 bit			12 bit	
Conversion Time	N/A			$7.5 \mu \mathrm{~s}$ every $512 \mu \mathrm{~s}$ (nominal)	
Module Throughput Delay	$512 \mu \mathrm{~s}$ (nominal)			1.10 ms (maximum) * $512 \mu \mathrm{~s}$ (typical)	

* Worst-case throughput occurs when the module just misses an event.

Current Loop Input Specifications for 4-Channel Modules

Cat. No.	1746-NI4	1746-NIO4I	1746-NIO4V	1746-FIO4I	1746-FIO4V
Full Scale	20 mA				
Input Range	$\pm 20 \mathrm{~mA}$ (nominal) $\pm 30 \mathrm{~mA}$ (maximum)			0... 20 mA (nominal) for $0 \ldots 30 \mathrm{~mA}$ (maximum)	
Current Input Coding	$\pm 16,384$ for $\pm 20 \mathrm{~mA}$			$0 . . .2047$ counts for $0 . . .20 \mathrm{~mA}$	
Absolute Maximum Input Volthęē. 5 V dc or 7.5 V ac RMS Input Impedance 250Ω (nominal)	eqe .5 V dc or 7.5 V ac RMS				
Inputimpedance Resolution	1.22070μ A per LSB			$\begin{array}{\|l\|} \hline 250 \Omega \text { (nominal) } \\ 9.7656 \mu A \text { per bit } \end{array}$	
Overall Accuracy at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	$\pm 0.365 \%$ of full scale			$\pm 0.510 \%$ of full scale	
Overall Accuracy, $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$	$\pm 0.642 \%$ of full scale (maximum)			$\pm 0.850 \%$ of full scale	
Overall Accuracy Drift	+79 ppm $/{ }^{\circ} \mathrm{C}$ of full scale			+98 ppm $/{ }^{\circ} \mathrm{C}$ of full scale (maximum)	
Gain Error at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	+0.323\% (maximum)			+0.400\% (maximum)	
Gain Error, $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$	+0.556\% (maximum)			+0.707\% of full scale	
Gain Error Drift	$\pm 67 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			$\pm 89 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (maximum)	

Voltage Input Specifications for 4-Channel Modules

Cat. No	1746-N14	1746-NIO4I	1746-NIO4V	1746-FIO4I	1746-FlO4V
Full Scale	10 V dc				
Tnput Range Input Impedance	$\begin{aligned} & \pm 10 \mathrm{~V} \mathrm{dc}-1 \mathrm{LSB} \\ & 1 \mathrm{M} \Omega \end{aligned}$			$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \text { dc }-1 \text { LSB } \\ & 1 \mathrm{MQ} \Omega \end{aligned}$	
Overvoltage Protection $(\mathrm{IN}+\text { to }-\mathrm{IN})$	220 V dc or ac RMS continuously			220 V dc or ac RMS continuously	
Resolution	$305.176 \mu \mathrm{~V}$ per LSB $-32,768 \ldots+32,767$ for + 10V dc			2.4414 mV per LSB (nominal) $0 . . .4095$ counts for $0 . . .10 \mathrm{~V}$ dc	
Voltage Input Coding					
Overall Accuracy at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	$\pm 0.284 \%$ of full scale			$\pm 0.440 \%$ of full scale	
Overall Accuracy, $\pm 0.504 \%$	of full scale			$\pm 0.750 \%$ of full scale	
Overall Accuracy Drift (maximum)	+63 ppm/ ${ }^{\circ} \mathrm{C}$ of full scale (maximum)			+88 ppm/ ${ }^{\circ} \mathrm{C}$ (maximum)	
Gain Error at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	+0.263\% (maximum)			+0.323\% of full scale	
Gain Error, $+0.4610$	(maximum)			+0.530\% of full scale	
Gain Error Drift	$\pm 57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			$\pm 79 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	

Output Specifications for 4-Channel Modules

Cat. No.	1746-FIO4I1746-NIO4I		1746-NO4I	1746-FIO4V	1746-NIO4V	1746-NO4V
Number of Outputs	22					
- Backplane Current (mA) at 5	55 mA55 mA		55 mA	55 mA	55 mA	55 mA
Backplane Current (mA) at 2	150 mA 145 mA		195 mA *	120 mA	115 mA	145 mA
Isolation Voltage	Tested at 500 V ac and 7	10 V dc for 60 seconds				
Full Scale	21 mA					
Output Range (normal)	0... 20 mA - 1 LSB					
Output Coding	0...32,764 for 0... 21 mA			10 V dc		
Output Resolution (per LSB)	$2.56348 \mu \mathrm{~A}$			$\begin{array}{\|l\|} \hline \pm 10 \mathrm{Vdc}-1 \mathrm{~L} \\ 32.768 \end{array}$		
Converter Resolution	14-bit			$32,768 \ldots+3$	Vde	
Conversion Method	R-2R ladder			$1.22070 \mathrm{mV}$		
Step Response	2.5 ms (5...95\%)			14-bit		
Load Range	$0 . . .500 \Omega$			$\begin{aligned} & \text { R-2R ladder } \\ & 25 \mathrm{~ms} \text { (norm } \end{aligned}$		
				$1 \mathrm{~K} . . . \infty \Omega$		
Load Current (maximum)	N/A			10 mA		
Over-range Capability	5\% (0... $21 \mathrm{~mA} \mathrm{-1} \mathrm{LSB)}$			N/A		
Overall Accuracy at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	$\pm 0.298 \%$ of full scale			$\pm 0.208 \%$ of fur		
Overall Accuracy, $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$	$\pm 0.541 \%$ of full scale			$\pm 0.384 \%$ of f		
Overall Accuracy Drift (maximum)	$\pm 70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of full scale			$\pm 54 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
Gain Error at $25{ }^{\circ} \mathrm{C}\left(77{ }^{\circ} \mathrm{F}\right)$	$\pm 298 \%$ of full scale			$\pm 208 \%$ of full		
Gain Error, $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$	$\pm 516 \%$ of full scale			$\pm 374 \%$ of full		
Gain Error Drift (maximum)	$\pm 62 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of full scale			$\pm 47 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
* The 1746 -NO4I and 1746 -NO4V analog output modules have connections for user-supplied 24 V dc power supplies. When external 24 V dc power is used, the module only draws 5 V dc current from the SLC backplane. If an external 24 V dc power supply is required, the tolerance must be $24 \mathrm{~V} \pm 10 \%$ ($26.6 \ldots 26.4 \mathrm{~V}$ dc). The user power supplies for SLC 500 modular systems, 1746-P1, 1746-P2, 1746-P5, and 1746-P6 power supplies do not meet this specification.						

8-Channel Input Modules

General Input Specifications for 1746-NI8

Input Step Response for 1746-NI8

Filter Frequency			
	1% Accuracy $*$	0.1% Accuracy $*$	0.05% Accuracy $*$
2 Hz	$730 \mathrm{~ms}+$ module update time	$1100 \mathrm{~ms}+$ module update time	$1200 \mathrm{~ms}+$ module update time
5 Hz	$365 \mathrm{~ms}+$ module update time	$550 \mathrm{~ms}+$ module update time	$600 \mathrm{~ms}+$ module update time
10 Hz	$146 \mathrm{~ms}+$ module update time	$220 \mathrm{~ms}+$ module update time	$240 \mathrm{~ms}+$ module update time
20 Hz	$73 \mathrm{~ms}+$ module update time	$110 \mathrm{~ms}+$ module update time	$120 \mathrm{~ms}+$ module update time
50 Hz	$36.5 \mathrm{~ms}+$ module update time	$55 \mathrm{~ms}+$ module update time	$60 \mathrm{~ms}+$ module update time
75 Hz	$14.5 \mathrm{~ms}+$ module update time	$22 \mathrm{~ms}+$ module update time	$24 \mathrm{~ms}+$ module update time
no filter	$10 \mathrm{~ms}+$ module update time	$15 \mathrm{~ms}+$ module update time	$18 \mathrm{~ms}+$ module update time

[^1]Current Loop Specifications for 1746-NI8

Cat.No.	1746-N18
Current Input (maximum)	$\pm 30 \mathrm{~mA}$
Tnput impedance	250Ω
Input Resolution	$1 \mu \mathrm{~A}$
Display Resolution	$1 \mu \mathrm{~A}$
Overall Module Accuracy	0... $20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}, \pm 20 \mathrm{~mA}: \pm 0.05 \%$
$0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140{ }^{\circ} \mathrm{F}\right)$	$0 \ldots .1 \mathrm{~mA}: \pm 0.5 \%$
Overall Module Accuracy Drift	$\pm 12 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain Error at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	$\pm 0.025 \%$ (maximum)
Gain Error, 0..60 $0^{\circ} \mathrm{C}\left(32 . .140^{\circ} \mathrm{F}\right)$	$\pm 0.05 \%$ (maximum)
Gain Error Drift	$\pm 12 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Overvoltage Capability	7.5 V ac RMS (maximum)

Voltage Input Specifications for 1746-NI8

Cat. No.	1746-N18
Voltage Input (maximum)	$\pm 30 \mathrm{~V}$ between any two signal terminals
Input Impedance	$1 \mathrm{M} \Omega$
Input Resolution	1 mV
Display Resolution	1 mv
Overall Module Accuracy $0 . . .60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$	$\pm 0.1 \%$
Overall Module Accuracy Drift	$\pm 17 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain Error at $25^{\circ} \mathrm{C}$ (77 ${ }^{\circ} \mathrm{F}$)	$\pm 0.05 \%$ (maximum)
Gain Error, $0.0^{\circ} \mathrm{C}\left(32 \quad 140^{\circ} \mathrm{F}\right)$	$\pm 0.1 \%$ (maximum) $\pm 17 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { (maximum) }$

8-Channel Output Modules

Optional 24 V dc power supply must be N.E.C. Class 2.
Output Specifications for 8-Channel Modules

* J4 jumper set to RACK; 0 mA at 24 V dc with J 4 Jumper set to EXT

16-Channel Input Modules

General Input Specifications for 16-Channel Modules

Cat. No	1746-N1161	1746-N/16V
Backplane Current (mA) at 5 V	125 mA	125 mA
Backplane Current (mA) at 24 V	75 mA	75 mA
Baekplane PowerGonsumption	2.425 W maximum (0.625 W-at 5 V de, 1.8 W -at 24 V de)	2.425 W maximum (0.625 W-at 5 V de, 1.8 W - at 24 V de)
Isolation Voltage	Tested at 500 Vac and 710 V de for 60 seconds	Tested at 500 V ac and 710 V de for 60 seconds
Number of Inputs	16	16
Resolution	16-bit	16-bit
A/D Conversion Method	Sigma Detta	Sigma Detta
Common Mode Voltage Range	$\pm 10.25 \mathrm{~V}$ relative to the analog common terminal (20.5 V maximum between any two signal terminals)	$\pm 10.25 \mathrm{~V}$ relative to the analog common terminal (20.5 V maximum between any two signal terminals)
Input Filter Frequencies	6 Hz 10 Hz 20 Hz 40 Hz 60 Hz 80 Hz 100 Hz 250 Hz	6 Hz 10 Hz 20 Hz 40 Hz 60 Hz 80 Hz 100 Hz 250 Hz
Type of Input (Selectable)	$0 . . .20 \mathrm{~mA}$ $\pm 20 \mathrm{~mA}$ 4... 20 mA $0 \ldots .1 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$ dc $0 . .5 \mathrm{~V}$ dc $1 . .5 \mathrm{~V}$ dc $0 . .10 \mathrm{~V}$ dc
Type of Data (Selectable)	Engineering Units Scaled for PID Proportional Counts (-32,768...32,767 range) Proportional Counts (User-Defined Range, Class 3 only) 1746-NI4 Data Format	Engineering Units Scaled for PID Proportional Counts (-32,768...32,767 range) Proportional Counts (User-Defined Range, Class 3 only) 1746-NI4 Data Format
Input Impedance	249Ω	20Ω
Maximum Voltage Input without Damage	$\pm 8 \mathrm{~V}$ between analog common and any input terminal	$\pm{ }^{ \pm 30 \mathrm{~V}}$ between any two signal terminals
Current Input (maximum) Time to Detect Open Circuit	$\text { less than } 5 \mathrm{~s}$	$\text { less than } 5 \mathrm{~s}$
Input Resolution	640 nA	$312 \mu \mathrm{~V}$
Display Resolution	0.3\%	0.1\%
Module Error Over Full Operating Temperature F	0.08% of full scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ 8.95% of full scale at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	0.08% of full scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ 0.15% of full scale at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$
Input Offset Drift with Temperature	$360 \mathrm{nA} /{ }^{\circ} \mathrm{C}$	$90 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Gain Drift with Temperature	$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$15 \mathrm{ppmin} /{ }^{\circ} \mathrm{C}$
Catibration Accuracy at $25^{\circ} \mathrm{C}$ Calibration	better than 0.45% of range Factory calibrated	better than 0.05% of range Factory calibrated

Module update time is dependent on the number of channels enabled and the filter
frequency, as illustrated in the table below.
Module Update Times for 1746-NI16I and 1746-Ni16V

Filter Frequency	Module Update Time *			
	16 Channels Enabled	12 Channels Enabled	8 Channels Enabled	4 Channels Enabled
6 Hz	630 ms	473 ms	314 ms	7 ms
40 Hz	380 ms	285 ms	190 ms	4 ms
20 Hz	194 ms	145 ms	96 ms	4 ms
40 Hz	100 ms	75 ms	50 ms	4 ms
60 Hz	69 ms	52 ms	34 ms	4 ms
80 Hz	54 ms	39 ms	26 ms	4 ms
100 Hz	37 ms	27 ms	18 ms	4 ms
250 Hz	18 ms	13 ms	9 ms	4 ms

* Assuming all of the enabled channels have the filter frequency shown in the first column.

Temperature Modules

SLC 500 Thermocouple/mV Input Modules

All modules interface to thermocouple types $\mathrm{J}, \mathrm{K}, \mathrm{T}, \mathrm{E}, \mathrm{R}, \mathrm{S}, \mathrm{B}$, and N, and also accept millivolt signals that standard analog modules are not able to detect. The 1746-INT4 module also interfaces with thermocouple types C and D.

All modules provide fully-integrated cold-junction compensation (CJC) to retain thermocouple input signal accuracy, a choice of input filter frequencies, as well as fault diagnostics and status LEDs.

Note: Block transfers are required in a remote I/O configuration, using a 1747-ASB module with a PLC.

Thermocouple Module Specifications

Cat. No.	1746-NT4	1746-NT8	1746-INT4
Backplane Current (mA) at 54	60 mA	120 mA	110 mA
Backplane Current (mA) at 24	$V 40 \mathrm{~mA}$	70 mA	85 mA
Number of Inputs	4 plus a CJC sensor	8 plus a CJC sensor	4 plus a CJC sensor
Input Type	Thermocouple Types J, K, T, E, R, S, B, N Millivolt Input Ranges $\pm 50 \mathrm{mV}$ and $\pm 100 \mathrm{mV}$		Thermocouple Types J, K, T, E, R, S, B, N, C, D Millivolt Input Ranges $\pm 50 \mathrm{mV}$ and $\pm 100 \mathrm{mV}$
Filter Frequency	$10 \mathrm{~Hz}, 50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 250 \mathrm{~Hz}$		low pass digital filter corner frequency of 8 Hz
Input Step Response (95% of final value)	50 ms at 60 Hz	80 ms at 60 Hz	600 ms at 8 Hz
Temperature Untis Data Formats	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$		
	Raw/Proportional, Engineering Units, Engineering Units x 10, Scaled-for-PID		
Calibration	Autocalibration on channel enable and on a configuration change between channels.	Autocalibration at power-up a Calibrate approximately every 2 minute	nd via ladder program s
Isolation	500 V dc transient between inputs and chassis ground, an between inputs and backplan 2V dc continuous between channels (series B or later).	afterward. 500 V dc transient between chputs and chassis ground, a bbetween inputs and backplan 12.5 V dc continuous betweer channels.	d 1000 V dc transient or 150 V ac e. continuous channel-to-channe or channel-to-backplane.

The module update time is calculated by summing all the enabled Channel Sampling
Times plus the CJC Update Time.
Module Update Time for 1746-NT4 and 1746-NT8

Module Type	CJC	Channel Sampling Time per Channel			
		250 Hz Filter	60 Hz Filter	50 Hz Filter	10 Hz Filter
		12 ms	50 ms	60 ms	300 ms
$1746-$ NT8*	290 ms	66 ms	125 ms	140 ms	470 ms

* The sampling times for filter frequencies listed do not include a 45 ms open-circuit detection.

Module Update Time and Step Response for 1746-INT4

Corner Frequency	$50 / 60 \mathrm{~Hz}$ NMR	Filter Time	Update Time	Step Response (worst)
8 Hz	$50-60 \mathrm{~dB}$	180 ms	400 ms	600 ms

Thermocouple Temperature Ranges

* Thermocouple type only available with 1746-INT4 module

DC Millivolt Input Ranges for 1746-NT4, 1746-NT8, and 1746-INT4 Modules

Input Type	Range	Accuracy at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
$\pm 50 \mathrm{mV}$	$-50 \mathrm{mV} \mathrm{dc} \ldots+50 \mathrm{mV} \mathrm{dc}$	$50 \mu \mathrm{~V}$
$\pm 100 \mathrm{mV}$	$-100 \mathrm{mV} \mathrm{dc} \ldots+100 \mathrm{mV} \mathrm{dc}$	$50 \mu \mathrm{~V}$

RTD Input Modules

The RTD modules interface with platinum, nickel, copper, and nickel-iron RTDs, and with variable resistance devices such as potentiometers (0 to 3000Ω maximum). The module provides on-board RTD temperature scaling in degrees Celsius and degrees Fahrenheit or resistance scaling in ohms.

TIP: Block transfers are required in a remote I/O configuration, using a 1747-ASB with a PLC.

RTD/Resistance Input Modules

Cat. No.	1746-NR4	1746-NR8
Backplane Current (mA) at 5 V	50 mA	100 mA
Backplane Current (mA) at 24 V	50 mA	55 mA
Numberotinpuis	4	8
Input Type	100Ω Platinum (385) 200Ω Platinum (385) 500Ω Platinum (385) 1000Ω Platinum (385) 100Ω Platinum (3916) 200Ω Platinum (3916) 500Ω Platinum (3916) 1000Ω Platinum (3916) 10Ω Copper (426) 120Ω Nickel (618) 120Ω Nickel (672) 604Ω Nickel-Iron (518) 150Ω Resistance Input 500Ω Resistance Input 1000Ω Resistance Input 3000Ω Resistance Input	100Ω Platinum (385) 200Ω Platinum (385) 500Ω Platinum (385) 1000Ω Platinum (385) 100Ω Platinum (3916) 200Ω Platinum (3916) 500Ω Platinum (3916) 1000Ω Platinum (3916) 10Ω Copper (426) 120Ω Nickel (618) 120Ω Nickel (672) 604Ω Nickel-Iron (518) 150Ω Resistance Input 500Ω Resistance Input 1000Ω Resistance Input 3000Ω Resistance Input
Temperature Scale (selectable)	$1^{\circ} \mathrm{C}$ or $1^{\circ} \mathrm{F}$ and $0.1^{\circ} \mathrm{C}$ and $0.1{ }^{\circ} \mathrm{F}$	
Resistance Scale (selectable)	1Ω or 0.1Ω for all resistance ranges; or 0.1Ω or 0.01Ω for 150Ω potentiometer	
Filter Frequency (Selectable Filter)	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \\ & 250 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 28 \mathrm{~Hz} \\ & 50 / 60 \mathrm{~Hz} \\ & 800 \mathrm{~Hz} \\ & 6400 \mathrm{~Hz} \end{aligned}$
RTD Excitation Current (Two current values are user-selectable)	$\begin{aligned} & 0.5 \mathrm{~mA} * \\ & 2.0 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{~mA} * \\ & 1.0 \mathrm{~mA} \\ & \hline \end{aligned}$
Open-circult or Short-circuit Detection Maximum Cable Impedance	Zero, upscale or downscale	
Data Formats	25Ω maximum per 308.4 m (1000 ft)	
$\begin{aligned} & \text { Calibration } \\ & \hline \text { Isolation Voltage, } \end{aligned}$	Raw/Proportional, Engineering Units, Engineering Units x 10, Scaled-tor-PID	
Itrannre--to-Ctaannel Common Mode Voltage Separation	None	$\pm 5 \mathrm{~V}$
	500 V ac for 1 minute	

* Cannot use for 10Ω Copper RTD. Recommended for use with higher resistance ranges for both RTDs and direct response inputs (1000Ω RTDs and 3000Ω resistance input). Contact the RTD manufacturer for recommendations.
Must use for 10Ω Copper RTD. Recommended for use with all other RTD and direct resistance inputs, except 1000Ω RTDs and 3000Ω resistance ranges. Contact RTD manufacturer for recommendations.

RTD Channel Step Response for 1746-NR4 and 1746-NR8

1746-NR4					1746-NR8				
Filter Frequency	50 Hz NMR	$\begin{aligned} & 60 \mathrm{~Hz} \\ & \text { NMR } \end{aligned}$	Cut-off Frequency	Step Response	Filter Frequency	$50 \mathrm{~Hz}$ NMR	$\begin{aligned} & 60 \mathrm{~Hz} \\ & \text { NMR } \end{aligned}$	Cut-off Frequency	Step Response
10 Hz	100 dB		2.62 Hz	300 ms	28 Hz	110 dB	95 dB	7.8 Hz	120 ms
50 Hz	100 dB	-	13.1 Hz	60 ms	$50 / 60 \mathrm{~Hz}$	65 dB		13.65 Hz	68.6 ms
-60Hz		100 dB	15.72 Hz	50 ms	800 Hz			209.8 Hz	3.75 ms
250 Hz	-		65.5 Hz	12 ms	6400 Hz	-	-	1677 Hz	1.47 ms

Update Time for 1746-NR4 and 1746-NR8

1746-NR4		1746-NR8		
Filter Frequency	Channel Scan Time *	Filter Frequency	Channel Scan Time	With Lead Resistance Measurement
T0 Hz	305 ms	28 Hz	125 ms	250 ms
	65 ms	$50 / 60 \mathrm{~Hz}$	75 ms	147 ms
60 Hz	55 ms	800 Hz	10 ms	18 ms
250 Hz	17 ms	6400 Hz	6 ms	10 ms

[^2]RTD Temperature Range and Accuracy Specifications

RTD Type		1746-NR4				1746-NR8			
		0.5 mA Excitation		2.0 mA Excitation		0.25 mA Excitation		1.0 mA Excitation	
		Temp. Range	Acc. *	Temp. Range	Acc *	Temp. Range	Acc. *	Temp. Range	Acc. *
Platinum (385)	100Ω	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1560^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1562{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots .850^{\circ} \mathrm{C} \\ & -328 \ldots . .1560^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.7^{\circ} \mathrm{C} \\ & \pm 1.3^{\circ} \mathrm{F} \end{aligned}$
	200Ω	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1562{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9{ }^{\circ} \mathrm{F} \\ & \hline \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots . .1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.6^{\circ} \mathrm{C} \\ & \pm 1.1^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1560^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.7^{\circ} \mathrm{C} \\ & \pm 1.3^{\circ} \mathrm{F} \end{aligned}$
	500Ω	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.6^{\circ} \mathrm{C} \\ & \pm 1.1^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1562{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots .1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.7^{\circ} \mathrm{C} \\ & \pm 1.3^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 370^{\circ} \mathrm{C} \\ & -328 \ldots 698^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9^{\circ} \mathrm{F} \end{aligned}$
	1000Ω	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots 1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.6^{\circ} \mathrm{C} \\ & \pm 1.1^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 240^{\circ} \mathrm{C} \\ & -328 \ldots 464^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 850^{\circ} \mathrm{C} \\ & -328 \ldots .1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 1.2^{\circ} \mathrm{C} \\ & \pm 2.2^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l\|} -200 \ldots 50^{\circ} \mathrm{C} \\ -328 \ldots 122 \end{array}$	$\begin{aligned} & \pm 0.4^{\circ} \mathrm{C} \\ & \pm 0.7^{\circ} \mathrm{F} \end{aligned}$
Platinum (3916)	100Ω	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots 1166{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots 1166{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.4^{\circ} \mathrm{C} \\ & \pm 0.7^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots .1166{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.4^{\circ} \mathrm{C} \\ & \pm 0.7^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots . .1166{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.6^{\circ} \mathrm{C} \\ & \pm 1.1^{\circ} \mathrm{F} \end{aligned}$
	200Ω	$\begin{array}{\|l} -200 \ldots 630^{\circ} \mathrm{C} \\ -328 \ldots 166{ }^{\circ} \mathrm{F} \\ \hline \end{array}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots 1166^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.4^{\circ} \mathrm{C} \\ & \pm 0.7^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots .1166{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots .1166^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.6^{\circ} \mathrm{C} \\ & \pm 1.1^{\circ} \mathrm{F} \end{aligned}$
	500Ω	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots 1166^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l} \hline-200 \ldots 630^{\circ} \mathrm{C} \\ -328 \ldots 166^{\circ} \mathrm{F} \end{array}$	$\begin{aligned} & \pm 0.4^{\circ} \mathrm{C} \\ & \pm 0.7^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots 1166^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.6^{\circ} \mathrm{C} \\ & \pm 1.1^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l} -200 \ldots 370^{\circ} \mathrm{C} \\ -328 \ldots 698 \end{array}$	$\begin{aligned} & \pm 0.4^{\circ} \mathrm{C} \\ & \pm 0.7^{\circ} \mathrm{F} \end{aligned}$
	1000Ω	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots 160^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 230^{\circ} \mathrm{C} \\ & -328 \ldots 446{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.4^{\circ} \mathrm{C} \\ & \pm 0.7^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 630^{\circ} \mathrm{C} \\ & -328 \ldots .1160^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.9^{\circ} \mathrm{C} \\ & \pm 1.6^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l\|} -200 \ldots 50^{\circ} \mathrm{C} \\ -328 \ldots 122 \end{array}$	$\begin{aligned} & \pm 0.3^{\circ} \mathrm{C} \\ & \pm 0.6{ }^{\circ} \mathrm{F} \end{aligned}$
Copper (426)	10Ω	Not Allowed		$\begin{aligned} & -100 \ldots 260^{\circ} \mathrm{C} \\ & -148 \ldots 500{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.6^{\circ} \mathrm{C} \\ & \pm 1.1^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -100 \ldots 260^{\circ} \mathrm{C} \\ & -148 \ldots 500^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.5^{\circ} \mathrm{C} \\ & \pm 0.9{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -100 \ldots 260^{\circ} \mathrm{C} \\ & -148 \ldots 500^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.8^{\circ} \mathrm{C} \\ & \pm 1.4{ }^{\circ} \mathrm{F} \end{aligned}$
Nickel (618)	120Ω	$\begin{aligned} & -100 \ldots 260^{\circ} \mathrm{C} \\ & -148 \ldots 500^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C} \\ & \pm 0.4^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l} -100 \ldots 260^{\circ} \mathrm{C} \\ -148 \ldots 500^{\circ} \mathrm{F} \end{array}$	$\begin{aligned} & \pm 0.2{ }^{\circ} \mathrm{C} \\ & \pm 0.4{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -100 \ldots 260^{\circ} \mathrm{C} \\ & -148 \ldots 500^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C} \\ & \pm 0.4{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -100 \ldots 260^{\circ} \mathrm{C} \\ & -148 \ldots 500^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C} \\ & \pm 0.4{ }^{\circ} \mathrm{F} \end{aligned}$
$\begin{aligned} & \hline \text { Nickel } \\ & \text { (672) } \end{aligned}$	120Ω	$\begin{array}{\|l\|} \hline-80 \ldots . \ldots 60^{\circ} \mathrm{C} \\ -112 \ldots 50{ }^{\circ} \mathrm{F} \\ \hline \end{array}$	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C} \\ & \pm 0.4^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l\|} \hline-80 \ldots 260^{\circ} \mathrm{C} \\ -112 \ldots 500 \end{array}$	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C} \\ & \pm 0.4^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -80 \ldots . \ldots 60^{\circ} \mathrm{C} \\ & -112 \ldots 500{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C} \\ & \pm 0.4{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l\|} -80 \ldots . \ldots 60^{\circ} \mathrm{C} \\ -112 \ldots 500 \end{array}$	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C} \\ & \pm 0.4{ }^{\circ} \mathrm{F} \end{aligned}$
$\begin{aligned} & \text { Nickel/Iron } \\ & (518) \\ & \hline \end{aligned}$	604Ω	$\begin{array}{\|l} -100 \ldots . \ldots 200^{\circ} \mathrm{C} \\ -148 \ldots 392^{\circ} \mathrm{F} \end{array}$	$\begin{aligned} & \pm 0.3^{\circ} \mathrm{C} \\ & \pm 0.5^{\circ} \mathrm{F} \end{aligned}$	$\begin{array}{\|l\|} \hline-100 \ldots 200^{\circ} \mathrm{C} \\ -148 \ldots 39{ }^{\circ} \mathrm{F} \end{array}$	$\begin{aligned} & \pm 0.3^{\circ} \mathrm{C} \\ & \pm 0.5^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 200^{\circ} \mathrm{C} \\ & -328 \ldots 39{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.3^{\circ} \mathrm{C} \\ & \pm 0.5^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -200 \ldots 170^{\circ} \mathrm{C} \\ & -328 \ldots 338^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 0.3^{\circ} \mathrm{C} \\ & \pm 0.5^{\circ} \mathrm{F} \end{aligned}$

* The accuracy values assume that the module was calibrated within the specified temperature range of $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$.

Module accuracy using 100Ω or 200Ω platinum RTDs with 0.5 excitation current depends on the following criteria:
Module accuracy using 100Ω or 200Ω platinum RTDs with 0.5 excitation current depends on the following criteria:
(1) Module accuracy is $\pm 0.6^{\circ} \mathrm{C}$ after you apply power to the module or perform an autocalibration at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ ambient with the module operating temperature at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$.
(2) Module accuracy is $+\left(0.6^{\circ} \mathrm{C}\right.$. $\left.\mathrm{CT} \times 0.034^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\right)$ after you apply power to the module or perform an autocalibration at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ ambient with the module
(2) Module accuracy is $\pm\left(0.6^{\circ} \mathrm{C}+\mathrm{DT} \times 0.034^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\right)$ after you apply power to the module or perform an autocalibration at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ ambient with the module operating temperature
between $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$. DT is the temperature difference between the actual operating temperature of the module at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ and $0.034^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ is the temperature drift shown in
the table for 100Ω or 200Ω platinum RTDs.
(3) Module accuracy is $\pm 1.0^{\circ} \mathrm{C}$ after you apply power to the module or perform an autocalibration at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ ambient with the module operating temperature at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

1746-NR4 Resistance Input Specifications

Resistance	0.5 mA Excitation			2.0 mA Excitation			Resolution	Repeatability
	Resistance RangeAccuracy *		Temperature Drift	Resistance RangeAccuracy		Temperature Drift		
150Ω	$0 \Omega . . .150 \Omega$	$\pm 0.2 \Omega$	$\begin{aligned} & \pm 0.006 \Omega /{ }^{\circ} \mathrm{C} \\ & \pm 0.003 \Omega /{ }^{\circ} \mathrm{F} \end{aligned}$	$0 \Omega . . .150 \Omega$	$\pm 0.15 \Omega$	$\begin{aligned} & \pm 0.004 \Omega /{ }^{\circ} \mathrm{C} \\ & \pm 0.002 \Omega \Omega /{ }^{2} \mathrm{~F} \end{aligned}$	0.01Ω	$\pm 0.04 \Omega$
500Ω	$0 \Omega . . .500 \Omega$	$\pm 0.5 \Omega$	$\begin{aligned} & \pm 0.014 \Omega \Omega^{\circ} \mathrm{C} \\ & \pm 0.008 \Omega /{ }^{\circ} \mathrm{F} \end{aligned}$	$0 \Omega . .500 \Omega$	$\pm 0.5 \Omega$	$\begin{aligned} & \pm 0.014 \Omega /{ }^{\circ} \mathrm{C} \\ & \pm 0.008 \Omega /{ }^{\circ} \mathrm{F} \end{aligned}$	0.1Ω	$\pm 0.2 \Omega$
1000Ω	$0 \Omega \ldots 1000 \Omega$	$\pm 1.0 \Omega$	$\begin{aligned} & \pm 0.029 \Omega 0^{\circ} \mathrm{C} \\ & \pm 0.016 \Omega /{ }^{\circ} \mathrm{F} \\ & +0.043 \Omega /{ }^{\circ} \mathrm{C} \end{aligned}$	$0 \Omega \ldots 1000 \Omega$	$\pm 1.0 \Omega$	$\begin{aligned} & \pm 0.029 \Omega /{ }^{\circ} \mathrm{C} \\ & \pm 0.016 \Omega / /^{\circ} \mathrm{F} \\ & +0.043 \Omega /{ }^{\circ} \mathrm{C} \end{aligned}$	0.1Ω	$\pm 0.2 \Omega$
3000Ω	$0 \Omega \ldots 3000 \Omega$	$\pm 1.5 \Omega$	$\pm 0.024 \Omega /{ }^{\circ} \mathrm{F}$	$0 \Omega \ldots 1900 \Omega$	$\pm 1.5 \Omega$	$\pm 0.024 \Omega /{ }^{\circ} \mathrm{F}$	0.1Ω	$\pm 0.2 \Omega$

* The accuracy values assume that the module was calibrated within the specified temperature range of $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$.

1746-NR8 Resistance Input Specifications

Resistance	0.5 mA Excitation			2.0 mA Excitation			Resolution	Repeatability
	Resistance RangeAccuracy *		Temperature	Resistance RangeAccuracy *		Temperature Drift		
150Ω	$0 \Omega . . .150 \Omega$	$\pm 0.2 \Omega$	$\begin{aligned} & \pm 0.004 \Omega / /^{\circ} \mathrm{C} \\ & \pm 0.002 \Omega /{ }^{\circ} \mathrm{F} \end{aligned}$	$0 \Omega . . .150 \Omega$	$\pm 0.15 \Omega$	$\begin{aligned} & \pm 0.003 \Omega /{ }^{\circ} \mathrm{C} \\ & \pm 0.002 \Omega /{ }^{\circ} \mathrm{F} \end{aligned}$	0.01Ω	$\pm 0.04 \Omega$
500Ω	$0 \Omega . . .500 \Omega$	$\pm 0.5 \Omega$	$\begin{aligned} & \pm 0.02 \Omega \Omega \rho^{\circ} \mathrm{C} \\ & \pm 0.007 \Omega \Omega^{\circ} \mathrm{F} \\ & \hline 0.0250^{\circ} \mathrm{C} \end{aligned}$	$0 \Omega . .500 \Omega$	$\pm 0.5 \Omega$	$\begin{aligned} & \pm 0.012 \Omega \rho^{\circ} \mathrm{C} \\ & \pm 0.007 \Omega /^{\circ} \mathrm{F} \\ & +0025 /{ }^{\circ} \mathrm{O} \end{aligned}$	0.1Ω	$\pm 0.2 \Omega$
1000Ω	$0 \Omega . .1000 \Omega$	$\pm 1.0 \Omega$	$\begin{aligned} & \pm 0.014 \Omega / /^{\circ} \mathrm{F} \\ & \pm 0.040 \Omega /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$0 \Omega . .1000 \Omega$	± 1.0 ת	$\begin{aligned} & \pm 0.014 \Omega / /^{\circ} \mathrm{F} \\ & \pm 0.040 \Omega /{ }^{\circ} \mathrm{C} \end{aligned}$	0.1Ω	$\pm 0.2 \Omega$
3000Ω	$0 \Omega . .1200 \Omega$	$\pm 1.5 \Omega$	$\pm 0.023 \Omega /{ }^{\circ} \mathrm{F}$	$0 \Omega . .1200 \Omega$	$\pm 1.2 \Omega$	$\pm 0.023 \Omega /{ }^{\circ} \mathrm{F}$	0.1Ω	$\pm 0.2 \Omega$

* The accuracy values assume that the module was calibrated within the specified temperature range of $0 \ldots 60^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$.

Counter I/O Modules

1746-HSCE High Speed Counter

This module offers a single bi-directional counting channel, which supports quadrature, pulse/direction, or up/down counter input. Four on-board open collector outputs allow module control independent of the SLC processor scan. The module features three modes of operation: Range, Rate, and Sequencer.

Tip: The 1747-ASB module is not compatible with the 1746 -HSCE module.

1746-HSCE2 Multi-Channel High Speed Counter

The Multi-Channel High Speed Counter provides two sets of $\pm \mathrm{A}, \pm \mathrm{B}$, and $\pm \mathrm{Z}$ input channels, allowing up to two quadrature, differential line driver, or incremental encoders to be monitored. A and B input channels can also be configured to count single-ended pulse inputs from up to four input devices.

The module supports three operating modes that provide two, three, or four-channel operation. System performance is enhanced with the module's ability to accept control adjustments while it is actively counting pulses. The Z/gate input channel can be used for storing, holding, and resetting counter data.

High Speed Counter Specifications

Cat. No.	1746-HSCE1746-HSCE2	
Number of Inputs	1 set $\pm A, \pm B, \pm Z$ differential or single-end inputs, 5 V dc, 12 V dc, or 24 V dcor 4 puls	ed 2 sets $\pm A, \pm B, \pm Z, 2$ quadrature encoder e differential or single-ended inputs
Input Voltage Range	differential: 0...5V dc single-ended: $\pm 5 \mathrm{~V}$ dc 5 V dc: $3.8 . . .5 .5 \mathrm{~V}$ dc 12 V dc: $9.4 \ldots . .16 .5 \mathrm{~V}$ dc 24 V dc: $16.5 . .30 \mathrm{~V}$ dc	5 V dc: $4.2 \ldots . .12 \mathrm{~V}$ dc 24 V dc: $10 . . .30 \mathrm{~V}$ dc
Frequency	50 kHz for range 32 kHz for rate 50 kHz for sequencer	$\begin{aligned} & 250 \mathrm{kHz} @ \text { X4 } \\ & 500 \mathrm{kHz} @ \text { X2 } \\ & 1 \mathrm{MHz} \text { for all other } \end{aligned}$
Max. Counts	16-bit, $\pm 32,768$	24 -bit, $\pm 8,388,607$ in Class 4 16 -bit, $\pm 32,768$ in Class 1
Throughput	sequencer mode: 1.8 ms range mode: 3.9 ms	$700 \mu \mathrm{~s}$ (typical)
Number of Outputs	4 open-collector outputs: 5,12 , or 24 V do	4 outputs: $5 \ldots . .30 \mathrm{~V}$ dc sourcing with electronic protection
Maximum Output Current	16 mA at 4.5 V dc 40 mA at 10 V dc 125 mA at 30 V dc	1A
Backplane Current (mA) at 5V	$0 \mathrm{~mA}$	250 mA
Backplane Current (mA) at 24 V	Tested at 1500 V	0 mA
ISolation Voltage		Tested at 1000 V

Process Control Modules

Blow Molding Module

This module features four independent axes of PID control plus one discrete I/O pair per channel for channel synchronization. The 1746-BLM module provides 256 points of resolution for each parison channel with interpolation, and has loop update times of 100 microseconds. Configurations include accumulator push-out control and three parison axis, and two accumulator push-outs and two parison axis.

The module is designed to work in a variety of applications, including accumulator machines, continuous extrusion machines, and reciprocating screw machines. The module performs its servo control task independently from the processor, but receives its configuration and run-time information from the processor.

Blow Molding Module Specifications

Cat. No.	1746-BLM
Common Specifications	
Backplane Current (mA) at 5V	110 mA
Resolution	14 bits
Isolation Veltage	
Conversion Rate	10 kHz
	4 Digital
Number of Inputs	4 Analog
Number of Outputs	4 Digital 4 Analog 1 Excitation
Analog Inputs	
Differential Input Range	$\pm 10 \mathrm{~V}$ dc
Common Mode Input Range	$\pm 200 \mathrm{~V} \mathrm{dc}$
Differential Impedance	800 k ?
-Gommen Mode Impedanee	400 kS
Overvoltage Protection	+500V
Analog Output	
Output Voltage Range	
Maximum Continuous Current	$\pm 10 \mathrm{~V}$
Shent Cireutit Current	1 mA
Type	$<20 \mathrm{~mA}$
Input Voltage Range	
Minimum ONState Voltage	Optocoupler
Minimum OFF State Voltage	0...30V dc
Maximum nput Current (at 30 V dc)	22 Vdc
Protection	2V do
Digital Output	7 mA
Type	Polarity Reversal
Maximumroff State Voltage	
Excitation Outpu	
Source	Open Collector
Maximum Continuous Current	30 Vdc
-Short Circuit Current	
Shert Cireuil Duration (single ouput)	
	Axis 0 A/D reference
	2 mA (10 K 2 Inear pot)
	-20 mA
	indefinite

Barrel Temperature Module

This module provides four zones of Autotuned PID heat/cool temperature control. Each input functions as the process variable (PV) for a PID loop. The PID algorithm and tuning-assisted process (TAP) algorithm are performed on the module for each of the loops. The control variable (CV) output of each loop, either analog or timeproportioned output (TPO), is sent from the module to the SLC data table. Your application logic must access the CV value in the data table and send the analog or TPO data to an output module to close the loop. The module is compatible with SLC 5/02 and higher processors.

Barrel Temperature Module Specifications

Cat. No.	1746-BTM
Number of Inputs	4 Backplane and Channel-to-Channel Isolated
Thermocouple Inputs	B, C, D, E, J, K, N, R, S, or T
Input Voltago	$-50 . .50 \mathrm{mV}$ and $-100 . .100 \mathrm{mV}$
A/D Conversion Method	Sigma-Delta modulation
Input Filtering	Analog filter with low-pass digital filter
Normal Mode Rejection	$\begin{aligned} & >50 \mathrm{~dB} @ 50 \mathrm{~Hz} \\ & >60 \mathrm{~dB} @ 60 \mathrm{~Hz} \end{aligned}$
Common Mode Rejection	> 120 dB @ $50 / 60 \mathrm{~Hz}$ with $1 \mathrm{k} \Omega$ imbalance
Channel Bandwidth (-3dB)	8 Hz
-resolution	16 -bil resolution or 75 -bit plus-sign
Data Format	16-bit signed integer (natural binary)
Backplane Current (mA) at 5 V	110 mA
Backplane Current (mA) at 24 V	85 mA
Isolation Voltage	Tested at 1000 V ac for 60 s

Motion Control Modules

Stepper Control Module

The 1746-HSTP1 is a single-axis stepper controller capable of providing up to 250 kHz pulse train output for micro-stepping applications. The module can interface directly with a quadrature encoder to monitor position. Built-in loop back diagnostics provide monitoring of pulse train commands. Programmable modes of operation eliminate the need to set DIP switches.

Stepper Control Module Specifications

Cat. No.	$1746-\mathrm{HSTP1}$
Backplane Current (mA) at 5V	200 mA
Inputs	5 V dc differential encoder, or
	$12 / 24 \mathrm{~V}$ dc single-ended auxiliary
Input Frequency, Max.	250 kHz
Outputs	Digital output for transtator
Module Update Time	$7 \ldots \mathrm{~ms}$...30 mA @ 5 V dc
Pulse Train Switching	$2 \ldots .2500$ pulses per second 2 Trapezoidal velocity profile
Acceleration	

Servo Control Module

The 1746-HSRV servo control module is a single-axis, closed-loop servo controller which can be operated with a variety of SLC 500 processors and features block execution independent of the scan time of the processor. For fast and accurate control, the module monitors encoder feedback up to 300 kHz .

Ladder logic controls all of the motion. Complicated moves are accomplished using blended motion profiles stored in the module's internal memory and can be executed repeatedly. The profiles are stored as a series of absolute moves, and additional moves or homing operations can be performed between blended moves. The module can reset the absolute position when an encoder marker pulse is detected.

Servo Control Module Specifications

Cat. No.	1746-HSRV
Backplane Current (mA) at 5V	300 mA
Number of inputs	3 general purpose local fast inputs
Input Frequency, Max.	300 kHz @ 0° quadrature error
Outputs	1 general purpose local fast output
Module Update Time	2 ms

Positioning Modules

Open-Loop Velocity

This module provides an ideal control strategy for simple hydraulic applications. It can accelerate and decelerate the hydraulic ram, using as many as seven extend and seven retract segments.

Compatible LDTs are:
Balluff BTL-2-L2 or -M2
Gemco Quick-Stick II
Santest GYRP or GYRG
Temposonics II with DPM or RPM
1746-QV Specifications

Cat. No.	1746-QV
Number of Inputs	1
Number of Outputs	1
Backplane Current (mA) at 5V	250 mA
Voltage Category	Temposonics II (DPM \& RPM) or Balluff (BTL-2-L2 \& M2) -10V dc...10V dc
Independent Power Source Requirement	$\begin{aligned} & 0.400 \mathrm{~mA} \text { at }+15 \mathrm{~V} \text { dc } \\ & \text { and } 0.295 \mathrm{~A} \text { at }-15 \mathrm{~V} \text { dc } \\ & \text { (typical but not LDT-dependent) } \end{aligned}$
LDT Inputs	Interrogate Gate 15 V dc PS PS Common Shield/Frame
Module Resolution and Range	160 in ± 0.01 in.
Analog Output	$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \text { dc at } 250 \mathrm{~mA} \text { or } \\ & -10 \ldots+10 \mathrm{~V} \text { dc at } 250 \mathrm{~mA} \\ & \text { within } \pm 1 \% \text { of its programmed value- } \end{aligned}$
Accuracy of Voltage Output	2 ms
Module Update Time	

Synchronized Axes Module

This module offers four axes of closed-loop servo positioning control, using internal logic to synchronize multiple axes. The 1746-QS features a differential interface to either pulse-width modulated (DPM) or start/stop pulse (RPM) linear displacement transducer (LDT) inputs.

Compatible LDTs are:
Balluff BTL-2-L2 or -M2
Gemco Quick-Stick II

Santest GYRP or GYRG

Temposonics II with DPM or RPM

Use the 1492-AIFMQS interface module and the 1492-ACABLExxQ (xx = cable length) pre-wired cable with the 1746-QS module. The 1492-AIFMQS interface module is required for CE certification.

1746-QS Specifications

Cat. No.	1746-QS
Number of Inputs	4
Number of Outputs	4
Backplane Current (mA) at 5 V	1000 mA
Backplane-Current (mA) at 24 V	200 mA
	Input: LDT with RPM or DPM
Voltage Category	Output: -10V dc...10V dc $-10 \ldots 10 \mathrm{~V}$ dc at 5 mA \qquad
Analog Output	2 ms
Output Resolution	Drive Output Disable: $15 \mu \mathrm{~s}$
Module Update Time	Software Reset: 30 ms
Fail-safe Timers	
LDT Range and Resolution	2.30 in. @ 0.004 in. 120 in. @ 0.002 in. 60 in @ 0.001 in .
Module Cable Connections	I/O to IFM: -DB-26 subminiature (1492-ACABLE) Configuration/Diagnostics: -DB-9 (1746-CP3)
LDT Cable Length	RPM type: 45.7 m (150 ft) DPM type: $61.0(200 \mathrm{ft})$

BASIC Language Modules

The BASIC modules add data collection and report generation capability to any SLC system. Two configurable channels enable you to connect to printers, operator interface terminals, modems, and other foreign devices.

The 1746-BAS-T module is a higher-speed version of the 1746-BAS module with identical hardware features. The modules can be interchanged, except that the 1746-BAS-T module uses different (optional) memory modules.

The modules program in the BASIC language using an ASCII terminal or 1747-PBASE programming software. Because the 1746-BAS-T module can execute a BASIC program four times faster than the 1746-BAS module, programs written originally for the 1746-BAS module may require adjustment for identical operation on a 1746-BAST module.

BASIC Language Modules Catalog Numbers and Specifications

* If the BASIC Module DH-485 channel is connected to a 1747-AIC Link Coupler, add 0.085 A to the BASIC module's power supply loading value at 24 V dc.
If the BASIC Module is connected to any device (e.g., DTAM) either directly or through a 1747-AIC Link Coupler, add the appropriate current loading for the device to the BASIC module's power supply loading value at 24 V dc.

Windows-compatible BASIC Module Interface Software (1747-WINBAS)

BASIC Software is a terminal emulation program specifically written for you to interface to a Rockwell Automation 1746-BAS, 1746-BAS-T, or 1771-DB BASIC module. BASIC software simplifies the uploading and downloading of BASIC module programs, as well as backing up and restoring complete module images. BASIC software also provides debugging tools to aid in troubleshooting BASIC programs while online.

As a terminal emulation program, BASIC software requires either one RS-232 serial COM port or a DH-485 interface (1784-PCMK, 1784-PKTX, 1784-PKTXD, or 1747-UIC converter) be available on the personal computers. Bridging to the DH-485 network from other networks is not supported.

BASIC software works on personal computers with Windows 98, 2000, NT, and XP operating systems. RSLinx Classic OEM software must be installed on the personal computer to communicate to the 1746-BAS module via the DH-485 interface.

BASIC Development Software (1747-PBASE)

BASIC Development Software, an optional DOS-based software package, provides a structured and efficient means to create and debug BASIC programs. It uses the personal computer to facilitate editing, compiling, uploading, and downloading of BASIC programs. The PC requires 640 Kbytes of RAM, a fixed disk drive with 2 Mbytes of free disk space, and DOS version 3.1 or later.

Wiring systems consist of interface modules (IFM) and pre-wired cables that replace the terminal blocks and up to 50% of the point-to-point wiring between the SLC 500 and field devices. Pre-wired cables connect directly to the IFM and have the Removable Terminal Blocks (RTBs) of most 24 V ac/dc and 120 V ac 16 - and 32channel 1746 discrete I/O modules. The IFMs allow you to conveniently incorporate 1,2 , or 3 wiring terminals per I/O point, field-side voltage indicating LEDs, and/or output fuse protection. I/O module-ready cables, with a pre-wired 1746 RTB on one end and free conductors on the other, are also available for use with standard terminal blocks.

For the most up-to-date listing of IFMs and pre-wired cables, see www.rockwellautomation.com.

To find the interface module and cable for specific I/O modules using the following tables, follow these steps:

1. Locate I/O module required. The top row in each table indicates the I/O module for the I/O platform.
2. Locate the Interface Module Cat. No. column in the appropriate table.
3. Determine whether the interface module can be used with the I/O module, indicated by a letter code in the
appropriate Cat. No. colum
4. Build the Pre-Wired Cable catalog number: 1492-CABL \qquad

- The Letter Code in the table cell represents the suffix of the pre-wired cable catalog number.

For example: 1492-CABLE___A.

- Specify cable length. Standard Lengths are $0.5 \mathrm{~m}, 1.0 \mathrm{~m}, 2.5 \mathrm{~m}$, and 5.0 m . Replace the _ _ with 005,010 ,

025 or 050 , respectively, to indicate the length. For example: $1492-$ CABLE010A $=$ a 1.0 m cable with Letter Code A.

Feed-through 20-Terminal IFMs

	Cat. No.	//O Module Cat. No. 1746-.																				
Description					$\begin{aligned} & \text { HIM } \\ & \hline 1616 \\ & \hline \end{aligned}$					$\begin{aligned} & \text { IN } \\ & 16 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ITV IV } \\ & 616 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline O A \\ 16 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{OB} \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OB} \\ & 16 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{BP} \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OG} \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OV } \\ & 16 \end{aligned}$	$\begin{aligned} & \text { OVP } \\ & 16 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { OW } \\ 168 \\ \hline \end{array}$	¢
Standard 264V AC/DC Max.	1492-IFM20F	A	B		B	E	B		A	B	B	B	B	C	E	E	E	E	E	E	D	D
Narrow standard 132V AC/DC Max.	1492-IFM20FN	A	B		B	E	B		-	B	B	B	B	G	E	E	E	E	E	E	N	N
Extra terminals (2 per I/O) 264V AC/DC Max.	1492-IFM20F-2	A	B		B	E	B		A	B	B	B	B	C	E	E	E	E	E	E	D	-
3 -wire sensor type input devices 132V AC/DC	Max. 1492-IFM20F-3	A	B		B	E	B		-	B	B	B	B	-	-	-	-	-	-	-	-	-

LED Indicating 20-Terminal IFMs

Description	Cat. No.	1/O Module Cat. No. 1746-.																		
		$\begin{array}{\|l} \text { IA } \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \text { IB } \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { IC } \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { IG } \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { IH } \\ 16 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Im} \\ & 16 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \text { IN } \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ITB I } \\ 1616 \\ \hline \end{array}$	$\begin{aligned} & \text { ITV IV } \\ & \$ 16 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{OA} \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OB} \\ & 16 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{OB} \\ 16 \mathrm{E} \\ \hline \end{array}$	$\begin{aligned} & \text { QBP O } \\ & \hline 616 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { OV } \\ 16 \\ \hline \end{array}$		3w ox	k
Standard with 24V AC/DC LEDs	1492-IFM20D24	-	B	-	-	-	-	B	B	B	B	-	E	E	E	-	E	E	D	-
Narrow standard with 24V AC/DC LEDs	1492-IFM20D24N	-	B	-	-	-	-	B	B	B	B	-	E	E	E	-	-	-	N	-
Standard with 120V AC/DC LEDs	1492-IFM20D120	A	-	-	-	B	-	-	-	-	-	*	-	-	-	-	-	-	D	-
Narrow standard with 120V AC LEDs	1492-IFM20D120N	A	-	-	-	-	-	-	-	-	-	G	-	-	-	-	-	-	N	-
24V AC/DC LEDs and extra terminals for oy	tputs 1492-IFM20D24-2	-	-	-	-	-	-	-	-	-	-	-	E	E	E	-	E	E	D	-
24V AC/DC LEDs and extra terminals for inp	DU492-IFM20D24A-2	-	B	-	-	-	-	B	B	B	B	-	-	-	-	-	-	-	-	-
120V AC LEDs and extra terminals for outp	IIts492-IFM20D120-2	-	-	-	-	-	-	-	-	-	-	C	-	-	-	-	-	-	D	-
120 V AC LEDs and extra terminals for inputs	Sl 492-IFM20D120A-2	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-wire sensor with 24V AC/DC LEDs	1492-IFM20D24-3	-	B	-	-	-	-	B	B	B	B	-	-	-	-	-	-	-	-	-
8 Individually isolated with 24/48V AC/DC L and 4 terminals/output	$\begin{array}{\|l\|} \hline \text { Ds } \\ \text { IFM20DS24-4 } \\ \hline \end{array}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
8 Individually isolated with 120 V AC LEDs and terminals/output	nd 4 1492-IFM20DS120-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
240V AC LEDs and extra terminals for outp	IIS492-IFM20D240-2	-	-	-	-	-	-	-	-	-	-	C	-	-	-	-	-	-	D	-
240V AC LEDs and extra terminals for inpuls	S1492-IFM20D240A-2	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	-	-	-	-

* For applications with offside leakage current of $>0.5 \mathrm{ma}$. Use 1492-IFM20D120N instead of 1492-IFM20D120A-2 or 1492-IFM20D120-2.

Fusible 20-Terminal IFMs

		I/O Module Cat. No. 1746-.																		
Description	Cat. No.	$\begin{array}{\|l\|} \hline \text { IA IB } \\ 1616 \end{array}$	$\begin{aligned} & \text { SIC IG } \\ & 61610 \end{aligned}$	$\begin{aligned} & 1 \mathrm{IH} \text { IM } \\ & 16161 \end{aligned}$				$\begin{array}{\|} \text { IN } \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ITB } 1 \\ 1616 \\ \hline \end{array}$	$\begin{aligned} & 1 \text { IV IV } \\ & 1 \$ 16 \end{aligned}$		$\begin{array}{\|l} \hline \mathrm{OA} \\ 16 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{OB} \\ & 16 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{OB} D \\ 16 \mathrm{E} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{gBP} \text { OQ } \\ & 1616 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{OV} \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { OVP } \\ 1616 \\ \hline \end{array}$	$\begin{aligned} & \text { bw of } \\ & 3 \end{aligned}$	
120 V AC/DC with extra terminals for outp	uts 1492-IFM20F-F-2	-	-	-	-	-	-	-	-	-	-	C	E	E	E	-	E	E	D	-
Extra terminals with 24 V AC/DC blown fu LED indicators	\$492-IFM20F-F24-2	-	-	-	-	-	-	-	-	-	-	-	E	E	E	-	E	E	D	-
Extra terminals with 120 V AC/DC blown f LED indicators	15992-IFM20F-F120-2	-	-	-	-	-	-	-	-	-	-	C	-	-	-	-	-	-	D	-
Extra terminals with 240 V AC/DC blown f LED indicators	14992-IFM20F-F240-2	-	-	-	-	-	-	-	-	-	-	C	-	-	-	-	-	-	D	-
Extra terminals with 24 V AC/DC blown fu LED indicators for inputs	1492-IFM20F-F24A-2	-	B	-	-	-	-	B	B	-	-	-	-	-	-	-	E	E	-	-
Extra terminals with 120 V AC/DC blownt LED indicators for inputs	1492-IFM20F-F120A-2	A	-	-	-	B	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8 Individually isolated 120 V AG/DG with extra terminals for outputs SIndividually isolated with extra terminals	1492-IFM20F-FS-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
and 24 V AC/DC blown fuse LED indicato Two 4-point isolated groups with four	S492-IFM20F-FS24-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
terminals/input and 24 V AC/DC blown fus LED indicators 8 Individually isolated with extra	1492-IFM20F-FS24A-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Terminals/output and 120 V AC/DC blown fuse LED indicators 8 Individually isolated with 4	1492-IFM20F-FS120-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
torminalsfoutput and 120 V AG/DC blown fuse LED indicators Two 4-point isolated groups with four terminals/input and 120 V AC/DC blown f	1492-IFM20F-FS120-4 se	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
indicators 8 Individually isolated with 4 terminals/output and 240V AC/DC blown	1492-IFM20F-FS120A-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
fuse LED indicators	1492-IFM20F-FS240-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S

Relay Master and Expander 20-Terminal XIMs

Description	Cat. No.	I/O Module Cat. No. 1746-..																		
								$\begin{array}{\|l\|} \hline \text { IN } \\ 16 \\ \hline \end{array}$	ITB ITV IV 161616			$\begin{array}{\|l\|} \hline \mathrm{OA} \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{OB} \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathrm{OB} \text { Q } \\ 16 \mathrm{BP} \text { OQ } \\ 1616 \end{array}$			$\begin{array}{\|l\|} \hline \text { OV } \\ 16 \\ \hline \end{array}$			
Relay Master																				
20 -pin master with eight (8) 24 V DC relay	\$492-XIM2024-8R	-	-	-	-	-	-	-	-	-	-	-	E	E	E	-	-	-	-	-
20 -pin master with eight (8) 120 V AC rel	ys 1492-XIM20120-8R	-	-	-	-	-	-	-	-	-	-	CR	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { 20-pin master with sixteen (16) 24V DC } \\ & \text { relays } \end{aligned}$	1492-XIM2024-16R	-	-	-	-	-	-	-	-	-	-	-	E	E	E	-	-	-	-	-
20-pin master with sixteen (16) 24VDC relays with fusing	1492-XIM2024-16RF	-	-	-	-	-	-	-	-	-	-	-	E	E	E	-	-	-	-	-
-20-pin master with sixteen(16) 120V AC relays \qquad	1492-XIM20120-16R	-	-	-	-	-	-	-	-	-	-	CR	-	-	-	-	-	-	-	-
relays with fusing Relay Expander	1492-XIM20120-16RF	-	-	-	-	-	-	-	-	-	-	CR	-	-	-	-	-	-	-	-
Expander with eight (8) 24 V DC relays	1492-XIM24-8R	-	-	-	-	-	-	-	-	-	-	-	*	*	*	-	-	-	-	-
Expander with eight (8) 120V AC relays	1492-XIM120-8R	-	-	-	-	-	-	-	-	-	-	*	-	-	-	-	-	-	-	-
Fusible Expander																				
8-channel expander with 24 V DC blown 1492-XIMF-F2		-	-	-	-	-	-	-	-	-	-	-	*	*	*	-	-	-	-	-
indicators 8 -channel expander with 120 V AC blown 1492-XIMF-F1		-	-	-	-	-	-	-	-	-	-	*	-	-	-	-	-	-	-	-
fuse indicators Feed-through Expander Expan (8)		-	-	-	-	-	-	-	-	-	-	*	-	-	-	-	-	-	-	-

[^3]
40-Terminal IFMs and XIMs for 1746 Digital 32-Point I/O Modules

Feed-through 40-Terminal IFMs

		I/O Module Cat. No. 1746-.				
Description	Cat. No.	$\begin{aligned} & \text { IB } \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IV } \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{OB} \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{OB} \\ & 32 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { OV } \\ & 32 \end{aligned}$
Standard 132V AC/DC Max.	1492-IFM40F	H	H	H	H	H
Extra terminals (2 per I/O) 132V AC/DC Max.	1492-IFM40F-2	H	H	H	H	H
3 -wire sensor type input devices 60V AC/DC Max.	1492-IFM40F-3	H	H	-	-	-

LED Indicating 40-Terminal IFMs

Description	Cat. No.	I/O Module Cat. No. 1746-.				
		$\begin{array}{\|l\|l\|} \hline \text { IB } \\ 32 \end{array}$	$\begin{aligned} & \text { IV } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { OB } \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{OB} \\ & 32 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { OV } \\ & 32 \\ & \hline \end{aligned}$
Standard with 24V AC/DC LEDs	1492-IFM40D24	H	H	H	H	H
24 V AC/DC LEDs and extra terminals for outputs	1492-IFM40D24-2	-	-	H	H	H
24 V AC/DC LEDs and extra terminals for inputs	1492-IFM40D24A-2	H	H	-	-	-
120V AC LEDs and extra terminals for outputs	1492-IFM40D120-2	-	-	-	-	-
120V AC LEDs and extra terminals for inputs	1492-IFM40D120A-2	-	-	-	-	-
3 -wire sensor with 24 V AC/DC LEDs	1492-IFM40D24-3	H	H	-	-	-
16 Individually isolated with 24/48V AC/DC LEDs and four terminals/output	1492-IFM40DS24-4	-	-	-	-	-
16 Individually isolated with 24 V AC/DC LEDs and four terminals/input	1492-IFM40DS24A-4	-	-	-	-	-
16 Individually isolated with 120V AC LEDs and four terminals/output	1492-IFM40DS120-4	-	-	-	-	-
16 Individually isolated with 120V AC LEDs and four terminals/input	1492-IFM40DS120A-4	-	-	-	-	-
16 Individually isolated with 240V AC LEDs and four terminals/input	1492-IFM40DS240A-4	-	-	-	-	-

Fusible 40-Terminal IFMs

Description	Cat. No.	I/O Module Cat. No. 1746-...				
		$\begin{aligned} & \text { IBIVOB } \\ & 323232 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{OB} \\ & 32 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OV} \\ & 32 \\ & \hline \end{aligned}$
120 V AC/DC with extra terminals for outputs	1492-IFM40F-F-2				H	H
Extra terminals with 24 V AC/DC blown fuse indicators for outputs	1492-IFM40F-F24-2	-	-	H	H	H
Extra terminals with 120 V AC/DC blown fuse indicators for outputs	1492-IFM40F-F120-2	-	-	-	-	-
16 Individually isolated with extra terminals for 120 V AC/DC outputs	1492-IFM40F-FS-2	-	-	-	-	-
16 individually isolated with extra terminals and 24 V AC/DC blown fuse indicators	1492-IFM40F-FS24-2	-	-	-	-	-
16 Individually isolated with 24V AC/DC blown fuse indicators and four terminals/output	1492-IFM40F-FS24-4	-	-	-	-	-
16 Individually isolated with extra terminals and 120V AC/DC blown fuse LED indicators	1492-IFM40F-FS120-2	-	-	-	-	-
16 Individually isolated with 120V AC/DC blown fuse indicators and four terminals/output	1492-IFM40F-FS120-4	-	-	-	-	-
16 Individually isolated with 240V AC/DC blown fuse indicators and four terminals/output	1492-IFM40F-FS240-4	-	-	-	-	-
16 Individually isolated with 24V AC/DC blown fuse indicators and four terminals/input	1492-IFM40F-FS24A-4	-	-	-	-	-
16 Individually isolated with 120 V AC/DC blown fuse indicators and four terminals/input	1492-IFM40F-FS120A-4	-	-	-	-	-

Relay Master and Expander 40-Terminal XIMs

* Two or three expanders can be connected to a master to provide a total of 32 outputs. An extender cable is included with each expander to connect it to the master.

Can have one expandable module per master.

Pre-Wired Cables for 1746 Digital I/O Modules

These pre-wired cables have a pre-wired removable terminal block (RTB) on one end to connect to the front of a Bulletin 1746 digital I/O module and a connector on the other end to plug into a 20 - or 40 -terminal IFM/XIM. You must first select the IFM/XIM from one of the preceding selection tables.

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| Cable Cat. No. | Suild-to-Order | | |
| Available | | | |

* Cables are available in standard lengths of $0.5 \mathrm{~m}, 1.0 \mathrm{~m}, 2.5 \mathrm{~m}$, and 5.0 m . To order, insert the code for the desired cable length into the cat. no. $0005=0.5 \mathrm{~m}, 010=1.0 \mathrm{~m}, 025=2.5 \mathrm{~m}$, and $050=5.0 \mathrm{~m}$). Example: Cat. No. 1492-CABLE005N is for a 0.5 m cable that could be used to connect a Cat. No. 1492-IFM20D24N IFM to a Cat. No. $1746-\mathrm{OW} 16$ I/O module. Build-toorder lengths are also available.

I/O Module-Ready Cables for 1746 Digital I/O Modules

The I/O module-ready cables have a pre-wired RTB on one end to plug onto the front of a Bulletin 1746 I/O module and 20 or 40 individually colored \#18 AWG conductors on the other end. These cables provide the convenience of pre-wired connections at the I/O module end, while still allowing the flexibility to fieldwire to standard terminal blocks of your choice.

Cable Cat. No.	Standard Cable B LengthsAvailable	uild-to-Order	No. of Conductors	lating I/O Module Cat. No.
1492-CABLE N3	1.0, 2.5, 5.0 mYes		401746-IB32,	-IV32, -OB32, -OV32, -OB32E
1492-CABLE RTBB	1.0, 2.5, 5.0 m	Yes	20	1746-IB16, -IC16, -IG16, -IH16, -IN16, -ITB16, -ITV16, -IV16, -OB16, -OB16E, -OBP8, -OBP16, -OG16, -OV16, -
1492-CABLE RTBO	1.0, 2.5, 5.0 m	Yes	20	1746-OWW16, -OX8
1492-CABLE RTBR	1.0, 2.5, 5.0 m	Yes	20	1746-IA16, -OA16, -OAP12, -IM16

Cables are available in standard lengths of $1.0 \mathrm{~m}, 2.5 \mathrm{~m}$, and 5.0 m . To order, insert the code for the desired cable length into the cat. $\mathrm{no} .(010=1.0 \mathrm{~m}, 025=2.5 \mathrm{~m}$, and $050=5.0 \mathrm{~m})$.
Example: Cat. No. 1492-CABLE050RTBR is for a 5.0 m cable with a pre-wired Cat. No. 1746-RT25R RTB on one end.
Note: The following I/O Modules do not have RTBs: 1746-IA4, 1746-IA8, 1746-IB8, 1746-IM4, 1746-IM8, 1746-IV8, 1746-OA8, 1746-OB8.

AIFMs for 1746 Analog I/O Modules

Description	Cat. ${ }^{\text {No. }}$	I/O Module Cat. No. 1746-..											$\begin{aligned} & \mathrm{NI} \\ & 16 \mathrm{~V} \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { FIOFIO } \\ & 414 \mathrm{~V} 48 \end{aligned}$				$\mathrm{N}_{41}^{\mathrm{NIO}}$	$\begin{aligned} & \mathrm{NIO} \\ & 4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{NO} \\ & 4 \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & 4 \mathrm{~V} \end{aligned}$	$\mathrm{N}_{4}^{\mathrm{NR}}$	OS	$\begin{aligned} & \hline \mathrm{NI} \\ & 161 \end{aligned}$	
Feed-through													
4-channel input, output or 2-in/2-out combination wi 3 terminals/channel	$\begin{aligned} & \text { th } \\ & 1492-\text { AIFM4-3 } \end{aligned}$	L	L	A	-	L	L	B	B	-	-	-	-
-0-chanmel isolated with $3 . .44$ terminrats/chanmel ${ }^{\text {a }}$	1492-AIFM6S-3	-	-	-	-	-	-	-	-	D	-	-	-
8 -ehanneldifferential 46 -ehannet single-ended with terminals/channel Thermocouple	1492-AIFM8-3	-	-	-	C	-	-	-	-	-	-	A46	A46
6-channel with 3 terminals/channel													
Fusible	1492-AIFM6TC-3	1-	-	-	-	1-	-	-	-	-	-	1-	-
2-channel output, 2-channel input with 24 V blown fuse													
indicators, test points, 5 terminals/input, 3 terminals/output 4 -channel with 24 V blown fuse indicators, test poin terminals/input	14, ${ }^{\text {che }}$-AIFM4C-F-5	L	L	-	-	L	L	-	-	-	-	-	-
8 -channel with 24 V DC blown fuse indicators, 5 terminals/channel	1492-AIFM4I-F-5	-	-	A	-	-	-	-	-	-	-	-	-
16-channel input with 24 V DC blown fuse indicators terminals/channel	$\begin{aligned} & 3 \\ & 1492-A I F M 8-F-5 \end{aligned}$	-	-	-	C	-	-	-	-	-	-	-	-
10-channrel input with 24 V De blown fuse inideators terminals/channel 4 -input/4-output channel with 8 fuses and 24 V blow	${ }^{5} 1492$-AIFM16-F-3	-	-	-	-	-	-	-	-	-	-	A46	A46
fuse indicators	1492-AIFM16-F-5	-	-	-	-	-	-	-	-	-	-	-	-
	1492-AIFMQS	-	-	-	-	-	-	-	-	-	Q	-	-

Pre-Wired Cables for 1746 Analog I/O Modules

These pre-wired cables have a pre-wired RTB on one end to connect to the front of a Bulletin 1746 analog I/O module and a connector on the other end to plug into a 20 or 40 -terminal IFM. To use this table, you must first have selected an IFM from the preceding table.

Cable Cat. No.	Standard Cable Lengths (m)	Build-to-Order Available	AIFM Connector	Mating I/O Module Cat. No.
1492-ACABLE*A	0.5, 1.0, 2.5, 5.0 m	Yes	15-pin D-shell	1746-NI4
1492-ACABLE*B	0.5, 1.0, 2.5, 5.0 m	Yes	15-pin D-shell	1746-NO4I, -NO4V
1492-ACABLE*C	0.5, 1.0, 2.5, 5.0 m	Yes	25-pin D-shell	1746-NI8
1492-ACABLE*D	0.5, 1.0, 2.5, 5.0 m	Yes	25-pin D-shell	1746-NR4
1492-ACABLE*L	0.5, 1.0, 2.5, 5.0 m	Yes	15-pin D-shell	1746-NIO4I, -NIO4V, -FIO4I, -FIO4V
1492-ACABLE*Q	0.5, 1.0, 2.5, 5.0 m	Yes	25-pin D-shell	1746-QS
1492-ACAB*A46	0.5, 1.0, 2.5, 5.0 m	Yes	25-pin D-shell	1746-NI16I, -NI16V

* To order, insert the code for the desired cable length into the cat. no. ($005=0.5 \mathrm{~m}, 010=1.0 \mathrm{~m}, 025=2.5 \mathrm{~m}$, and $050=5.0 \mathrm{~m})$. Example: Cat. No. 1492-ACABLE005A is for a 0.5 m cable that could be used to connect a Cat. No. 1492-AIFM4I-F-5 IFM to a Cat. No. 1746-NI4 I/O module.

Step 2 - Select:

networks

communication modules

Selecting Network Communications

Rockwell Automation offers many control and communications media products to help you integrate plant operations. The SLC 500 family features communications modules and devices which provide support for different networks, including EtherNet/IP,
ControlNet, DeviceNet, DH+, DH-485, Universal Remote I/O and serial networks.

NetLinx Open

Network Architecture
NetLinx Open Network Architecture is the Rockwell Automation strategy of using open networking technology for seamless, top-floor to shop-floor integration. The NetLinxbased networks - DeviceNet, ControlNet, and EtherNet/IP - all use the Common Industrial Protocol (CIP), so they speak a common language and share a universal set of communication services. NetLinx architecture, part of the Integrated Architecture, seamlessly integrates all the components in an automation system from a few devices on one network to multiple devices on multiple networks including access to the Internet - helping you to improve flexibility, reduce installation costs, and increase productivity.

The EtherNet/IP network is an open industrial-networking standard that supports implicit and explicit messaging and uses commercial, off-the-shelf Ethernet equipment and physical media.

The ControlNet network allows intelligent, high-speed control devices to share the information required for supervisory control, work-cell coordination, operator interface, remote device configuration, programming, and troubleshooting.

The DeviceNet network offers low-cost, high-speed access to plant-floor data from a broad range of plant-floor devices and a significant reduction in wiring.

Selecting a Network

You can configure your system for information exchange between a range of devices and computing platforms, and operation systems. Use the table below to help you select a network.

Network Selection Criteria

If your application requires	Choose this network	Select this communication module/device
- High-speed data transfer between information systems and/or a large of controllers - Internet/Intranet connection - Program maintenance	quantity	- SLC 5/05 Processor, or - 1761-NET-ENI EtherNet Interface - 1761-NET-ENIW Web-Enabled EtherNet Interface
- High-speed transfer of time-critical data between controllers and I/O de - Deterministic and repeatable data delivery - Program maintenance - Media redundancy or intrinsic safety options	vices ControlNet	- 1747-KFC15 ControlNet Messaging Module - 1747-SCNR ControlNet Scanner Module - 1747-ACN15 and -ACNR15 ControlNet Adapter Modules
- Connections of low-level devices directly to plant floor controllers, without the need to interface through I/O devices - More diagnostics for improved data collection and fault detection - Less wiring and reduced startup time than traditional, hard-wired syste	DeviceNet ns	- 1747-SDN DeviceNet Scanner Module - 1761-NET-DNI DeviceNet Interface Module
	Data Highway Plus (DH+)	- SLC 5/04 Processor
- Plant-wide and cell-level data sharing with program maintenance	DH-485	- 1747-KE DH-485/RS-232C Interface - SLC 5/01, 5/02 or 5/03 Processor with a 1747-AIC Isolated Link Coupler - SLC 5/01, 5/02 or 5/03 Processor with a 1761-NET-AIC Advanced Interface Converter - 1747-UIC USB to DH-485 Interface Converter
- Connections between controllers and I/O adapters - Distributed controllers so that each has its own I/O communications wi supervisory controller	Thaiversal Remote I/O	- 1747-SN Remote I/O Scanner - 1747-BSN Backup Remote I/O Scanner - 1747-ASB Remote I/O Adapter - 1747-DCM Direct Communication Module
- Modems - Messages that send and receive ASCII characters to/from devices suc ASCII terminals, bar code readers, message displays, weight scales,	$\begin{aligned} & \text { asSerial } \\ & \text { printers } \end{aligned}$	- SLC 5/03 Processor - SLC 5/04 Processor - SLC 5/05 Processor - SLC 5/01, 5/02, or 5/03 Processor with a 1747-KE DH-485/RS-232C Interface

Ethernet Network

The TCP/IP Ethernet network is a local-area network designed for the high-speed exchange of information between computers and related devices. With its high bandwidth (10 Mbps to 100 Mbps), an Ethernet network allows many computers, controllers, and other devices to communicate over vast distances. An Ethernet network provides enterprise-wide systems access to plant-floor data. With an Ethernet network, you can maximize communication between a wide variety of equipment.

Ethernet connectivity for SLC 500 is provided for the following:

SLC 5/05 processor

1761-NET-ENI/1761-NET-ENIW

MicroLogix 1000 controllers may be used with the 1761-NET-ENI, or -ENIW, however some features are not supported:

Email (ENI/ENIW)

Controller store/download of device configuration (ENI/ENIW)
Floating point value display (ENIW)
Floating point value write from the device to the controller (ENIW)
Integer value write from the device to the controller (ENIW)
String file display (ENIW)

Ethernet Interface (ENI) and Web-Enabled Ethernet Interface (ENIW)

The 1761-NET-ENI module provides EtherNet/IP Messaging connectivity for all DF1 full-duplex devices. The ENI allows users to easily connect SLC 5/03 and SLC 5/04 controllers onto new or existing Ethernet networks and upload/download programs, communicate between controllers, and generate E-mail messages via SMTP (simple mail transport protocol).

Compatible devices include: MicroLogix 1000/1200/1500, PLC-5, ControlLogix, CompactLogix, and FlexLogix controllers, and computers running RSLinx.

The 1761-NET-ENIW module adds web-server capabilities, enabling the display of 4 standard data web pages with user-configurable data descriptions, and 10 userconfigurable web page links on the ENIW home page.

EtherNet Device Specifications

Cat. No.	1761-NET-ENI	1761-NET-ENIW
Description	Ethernet Interface (ENI)	Web-Enabled Ethernet Interface (ENIW)
24V dc Current Draw	100 mA	
Power Supply DC Voltage Range *	20.4..26.4V dc	
Isolation Voltage	Tested at 710 V de for 60 s	
Inrush Gurrent, Max.	200 mA @ 24 V	
Communication Rate	10/100 Mbps	
Ethernet Interface	10/100Base-T	

* When the device is connected to a MicroLogix controller, power is provided by the MicroLogix controller's communication port. Series C devices

ControlNet Network

The ControlNet network is an open, high-speed, deterministic network used for transmitting time-critical information. It provides real-time control and messaging services for peer-to-peer communication. As a high-speed link between controllers and I/O devices, a ControlNet network combines the capabilities of existing Universal Remote I/O and DH+ networks. You can connect a variety of devices to a ControlNet network, including personal computers, controllers, operator interface devices, drives, I/O modules. A ControlNet network combines the functionality of an I/O network and a peer-to-peer messaging network. This open network provides the performance required for critical control data, such as I/O updates and controller-tocontroller interlocking. ControlNet networks also support the transfer of non-critical data, such as program uploads, downloads, and messaging.

ControlNet network connectivity for SLC 500 is provided by the following:

> 1747-KFC15 ControlNet Messaging Module
> 1747-SCNR ControlNet Scanner
> 1747-ACN15 and 1747-ACNR15 ControlNet Adapters

ControlNet Messaging Module

The 1747-KFC15 module provides the capability for an SLC $5 / 03,5 / 04$, and $5 / 05$ processor to send or receive unscheduled ControlNet messages. With unscheduled messaging, the SLC controller program can send peer-to-peer messages or be accessed and edited over the ControlNet network using RSLogix 500 software. The $1747-\mathrm{KFC} 15$ consumes 0.640 A at 5 V dc.

The ControlNet Messaging Module features:
4-digit, 7-segment display for node address and module status.
RS-232 KFC to SLC cable (included).
media redundancy via dual BNC connectors.
power from the SLC chassis backplane.
ability to upgrade firmware via ControlFlash.

ControlNet Scanner Module

The 1747-SCNR module provides scheduled Control Net network connections for SLC $5 / 02,5 / 03,5 / 04$, and $5 / 05$ processors. With scheduled messaging, the SLC processor can control I/O events in real time on the ControlNet network. The 1747-SCNR module can communicate with the 1771-PLC5C, 1756-Lx controllers, and with another 1747-SCNR module via scheduled messages on the ControlNet network. The 1747-SCNR module consumes 0.900 A at 5 V dc.

The ControlNet Scanner Module features:
media redundancy via dual BNC connectors.
ability to upgrade firmware via ControlFlash.
The 1747-SCNR module can control 1788-CN2DN and 1788-CN2FF linking devices as well as a variety of I/O platforms. The table below indicates with a " " which I/O platforms the 1747-SCNR module can control.

ControINet Scanner I/O Control Capabilities

1/O Platform	Discrete	Analog
1746		
1756		
1771		
1793		
1794		

ControINet Adapter Modules

The 1747-ACN15 and -ACNR15 modules enable up to three 1746 chassis of I/O modules to produce/consume scheduled I/O on the ControlNet network. Both modules are compatible with all 1746 discrete, analog, and specialty I/O, except those requiring G-file configuration, such as the 1747-SN and 1747-BSN modules. The 1747-ACN15 and ACNR15 modules consume 0.9A at 5 V dc.

The ControlNet Adapter Modules feature:
optional media redundancy via dual BNC connectors (1747-ACNR15).
individual connection to single modules or chassis connections to groups of discrete modules.
ability to upgrade firmware via ControlFlash.
The table below indicates with a " " which Control Net controllers can communicate to the 1747-ACN via scheduled messaging.

ControlNet Adapter Communication Capabilities

Scheduled Messaging	1747-SCNR	1771-PLC5C	$\begin{aligned} & \text { 1756-Lx via } \\ & \text { 1756-CNB } \end{aligned}$	1784-KTCS
1747-ACN(R)15				
$\begin{aligned} & \text { 1747-ACN(R)15 } \\ & \text { Analog I/O } \end{aligned}$				

The DeviceNet network is an open, low-level communication link that provides connections between simple industrial devices like sensors and actuators to high-level devices like controllers. Based on standard Controller Area Network (CAN) technology, this open network offers inter-operability between like devices from multiple vendors. A DeviceNet network reduces installation costs, startup/commissioning time, and system or machine downtime.

The DeviceNet network provides:
inter-operability - simple devices from multiple vendors that meet DeviceNet standards are interchangeable.

Common network - an open network provides common end-user solutions and reduces the need to support a wide variety of device networks.

Lower maintenance costs - replace devices without disrupting other devices.
Cost-effective wiring - one wire supplies communications and 24 V dc power.

DeviceNet Scanner Module

The 1747-SDN scanner module enables communication between an SLC $5 / 02$ or higher processor and a maximum of 63 DeviceNet-compatible I/O devices. The scanner is the DeviceNet master, enabling data transfer between DeviceNet slave devices using the strobe and poll message mode. The SLC system supports multiple scanners in a single-processor chassis.

The 1747-SDN module supports:
up to 150 words of input and 150 words of output data.
all standard DeviceNet communication rates.
the exchange of status and configuration data.
DeviceNet Scanner Specifications

Cat. No.	$1747-\mathrm{SDN}$
Backplane Current (mA) at 5V	500 mA
Network Power Source Requirmen Communication Rate	$90 \mathrm{~mA} @ 24 \mathrm{~V}$ dc (Class 2)
	$125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ at 24 V dc (Class 2)
	30 V (continuous), Basic Insulation Type
Isolation Voltage	Tested at 500 V ac for 60 s, DeviceNet to backplane at 24V dc (Class 2)

DeviceNet Interface (DNI)

The DNI is a smart DeviceNet-to-DF1 interface, allowing connection of DF1compatible devices to a DeviceNet network where the DNI functions as a DeviceNet slave. In addition, the DNI enables the setup of a peer-to-peer communications network on DeviceNet with other devices using DNIs, similar to a DH-485 or DH+ network.

This capability works between controllers, between PCs and controllers, and for program upload/download. I/O and data messages are prioritized, minimizing I/O determinism problems typically encountered when using networks that support I/O and messaging simultaneously.

The 1761-NET-DNI features:
high-speed local control with distributed DeviceNet I/O.
support for peer-to-peer messaging between controllers, PCs, and other devices.
programming and online monitoring over the DeviceNet network.
dial-in to any other DNI-controller combination on DeviceNet (when the DNI is connected to a modem).

DeviceNet Interface (DNI) Specifications
$\left.\begin{array}{l|l}\hline \text { Cat. No. } & 1761-\mathrm{NET}-\mathrm{DNI} \\ \hline \text { Network Power Source Requirement } & 200 \mathrm{~mA} \mathrm{@} \mathrm{24V} \mathrm{dc} \mathrm{(Class} \mathrm{2)} \\ \hline \text { Communication Rate } & 125 \mathrm{Kbps} \\ 250 \mathrm{Kbps} \\ 500 \mathrm{Kbps}\end{array}\right]$. Tested at 500 V dc for 60 s.

Data Highway Plus (DH+) Network

The DH+ network is a local area network designed to support remote programming and data acquisition for factory-floor applications. You can also use DH+ communication modules to implement a peer-to-peer network.

The DH+ network supports daisy-chain and trunkline-dropline configurations. The number of supported devices on a DH+ link and the maximum length of the cable depends on the communication rate.

The table below shows the maximum cable lengths, communication rates and associated termination resistor sizes for the DH+ network.

DH+ Network Specifications

Baud Rate	Maximum Cable Distance	Terminating Resistor Size
57.6 K baud	$3048 \mathrm{~m}(10,000 \mathrm{ft})$	150Ω
715 K baud	150 d	
230.4 K baud	$762 \mathrm{~m}(5000 \mathrm{ft})$	820

Data Highway Plus connectivity for the SLC 500 is provided by the SLC $5 / 04$ processor.
See page 63 for more information on the SLC 5/04.

DH-485 Network

The DH-485 communication network allows devices on the plant floor to share information. Via the network, application programs can:
monitor process and device parameters and status, including fault and alarm detection.
perform data acquisition.
perform supervisory control functions.
upload/download PLC programs over the network.
The network offers connection to up to 32 nodes, token passing access control, and the ability to add or remove nodes without disrupting the network. DH-485 supports slave devices and features multiple-master capability.

The SLC 500 family includes the following DH-485 devices:
1747-KE DH-485/RS-232C Interface Module
1761-NET-AIC Advanced Interface Converter
1747-AIC Isolated Link Coupler
1747-UIC USB to DH-485 Converter

DH-485/RS-232C Interface Module

The 1747-KE module is a communication interface that acts as a bridge between DH485 networks and RS-232C devices using DF1 protocol. It allows you to access your SLC 500 processor through an RS-232C link. When used in an SLC 500 chassis with a modem, the 1747-KE module enables remote programming and troubleshooting of any single SLC 500 processor, remote communication to a DH-485 network of SLC 500 processors, and remote data collection from the data table of any SLC 500 processor. The interface module allows you to use the SLC 500 as a remote terminal unit.

DH-485/RS-232C Interface Module

Cat. No.	$1747-\mathrm{KE}$
Backplane Current (mA) at 5V $*$	150 mA
Backplane Current (mA) at 24V*	40 mA
Real Time Clock/Accuracy	± 1 minute $/$ month at $25^{\circ}{ }^{\circ} \mathrm{C}\left(77{ }^{\circ} \mathrm{F}\right)$ $+0,-6$ minute $/ \mathrm{month}$ at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$
Isolation Voltage $*$	Tested at 500 V dc

* The 1747-KE module requires both 5 V dc and 24 V dc power from the SLC backplane. The power consumption of the module must be taken into consideration when planning your SLC 500 system.

If the 1747-AIC Link Coupler is connected to the 1747-KE module with a 1747-C10 cable, then the link coupler draws its power (85 mA at 24 V dc) through the module. Be sure to add this value to the current requirements for the $1747-\mathrm{KE}$ when estimating the total requirements for your system.
If the 1747-AIC Link Coupler is connected to the 1747-KE module with a 1747-C13 cable, the power for the link coupler comes from either an SLC 500 processor or an external power supply. Therefore, current requirements remain as listed.

1761-NET-AIC Advanced Interface Converter (AIC+)

This device is an isolated RS-232 to RS-485 converter. It allows two RS-232 devices
(SLC 5/03, SLC 5/04, SLC 5/05; MicroLogix 1000, 1200, and 1500; DTAM Micro; PanelView) to connect to the DH-485 network.
To protect connected devices, the coupler provides 1500 V dc isolation between the communications cable and the attached SLC 500 controller and peripheral devices.

Advanced Interface Converter (AIC+) Specifications

Cat. No.	$1761-\mathrm{NET}-\mathrm{AlC}$
24 V dc Current Draw	120 mA
Inrush Current, Max.	$200 \mathrm{~mA} @ 24 \mathrm{~V}$
24 V dc Power Source Requirement	$20.4 \ldots 28.8 \mathrm{~V}$ dc
Isolation Voltage	Tested at 500 V dc for 60 s

1747-AIC Isolated Link Coupler

The panel-mountable isolated link coupler is used to connect SLC $5 / 01$, SLC $5 / 02$, and
SLC 5/03 processors to a DH-485 network. Where there are two or more SLC 500 processors on the link, one isolated link coupler is required for each processor. When another device (DTAM or personal computer) is connected to an SLC 500 processor at a distance greater than $6.09 \mathrm{~m}(20 \mathrm{ft})$, an isolated link coupler must be connected at each end of the link. A 1747-C11 cable is included with the coupler for connection to the processor.

1747-UIC Universal Serial Bus to DH-485 Interface Converter

This device allows a computer with a USB port to interface to DH-485 ports on an SLC 500, MicroLogix, or other Rockwell Automation controllers and on PanelView terminals. The 1747-UIC features a USB connector as well as both an RS-232 and an RS-485 port. Use the RS-232 port to connect to SLC 5/03, 5/04, 5/05 (Channel 0), MicroLogix, CompactLogix, FlexLogix, ControlLogix, PanelView 300 or higher, or AIC+. Use the RS-485 Port to connect to SLC 5/01, 5/02, 5/03 (Channel 1), PanelView 300 or higher, or 1747-AIC.

USB to DH-485 Interface Converter Specifications

Cat. No.	1747-UC
USB Power Consumption	$<100 \mathrm{~mA}$ (low power)
USB Speed	USB $1.1(12 \mathrm{Mbps})$
DH-485 Baud Rate	19.2 Kbps

Universal Remote I/O (RIO) Network

The strength and versatility of the Universal Remote I/O network comes from the breadth of products it supports. In addition to 1746 I/O, the Universal Remote I/O network supports many Allen-Bradley and third-party devices.

Typical applications range from simple I/O links with controllers and I/O, to links with a wide variety of other types of devices. You connect devices through remote I/O adapter modules or built-in remote I/O adapters. Using the Universal RIO Network instead of direct-wiring a device over a long distance to a local I/O chassis reduces installation, start-up, and maintenance costs by placing the I/O closer to the sensors and actuators.

SLC 5/03, 5/04, and 5/05 processors support pass-thru which lets you configure RIO
devices remotely from an Ethernet, DH+, or DH-485/DF1 network, as well as block transfer instructions for faster reading and writing of I/O data.

Universal Remote I/O Connectivity for SLC 500 is provided by the following interfaces:
1747-SN Remote I/O Scanner
1747-BSN Backup Remote I/O Scanner
1747-ASB Remote I/O Adapter
1747-DCM Direct Communication Module

Remote I/O Scanner Module

The 1747-SN module provides high-speed remote communication between an SLC processor and Allen-Bradley operator interface and control devices. The scanner provides connectivity of your SLC 5/02 or higher processor to devices such as InView Message displays, Power Monitor 3000, PanelView, 1791 Block I/O, Allen-Bradley Drives, 1746 I/O, 1771 I/O, and Flex I/O devices.

Note: The series B scanner supports block transfer of up to 64 words of data.
The 1747-SN features:
noise immunity over various cable distances via selectable baud rates.
distribution of devices over a wide physical area, supporting RIO cable lengths up to
$3050 \mathrm{~m}(10,000 \mathrm{ft})$.
connection of up to 16 devices in normal mode or 32 devices in complementary mode.
capability to send large amounts of data to RIO devices without affecting system
throughput, utilizing block transfers.
capability to download and change applications in PanelView terminals and Power
monitors via remote I/O passthru.

Backup Scanner Module

The 1747-BSN module contains the full complement of RIO scanner features, plus backup capability for support of redundant processor applications. The backup system consists of one or more pairs of complementary modules, with one module residing in the primary system and the other in the backup system. The primary system controls the operation of remote I/O, while the backup system monitors communications via the high-speed serial link (HSSL) and is available to take control
in the event of a fault in the primary system.

The 1747-BSN features:
backup of one Remote I/O or DH+ network per complementary BSN module pair
backup of one RS-232/DH-485 communications per complentary BSN module pair,
allowing HMIs on channel 0 to automatically transfer to the primary processor. transfer of up to 2 K words of retentive data per BSN.
repair of primary system fault during secondary backup system operation.
remote programming capability of secondary processor on DH+ (SLC 5/04 only).
minimal user program impact.
backup system diagnostic information.

Remote I/O Adapter Module

The 1747-ASB module provides a communication link between SLC or PLC scanners and a wide variety of 1746 I/O modules over the Remote I/O link. The module maps the image of the I/O modules in its remote chassis directly to the SLC or PLC image table.

The 1747-ASB module features:
support for both discrete and block transfer image mapping.
efficient image utilization with support for $1 / 2$-slot, 1 -slot, and 2 -slot addressing.

Direct Communication Module

The 1747-DCM module links the SLC 500 controller to the Allen-Bradley PLC for distributed processing. The DCM acts as a remote I/O adapter on a remote I/O link. Information is transferred between a local PLC or SLC scanner and a remote 1747DCM
module during each remote I/O scan. The number of DCMs that a scanner can supervise depends on the number of chassis the scanner supports and the chassis size
of the DCM. The SLC 500 module controllers support multiple DCMs.
Note: An important distinction between a DCM module and the 1747-ASB module is
that a DCM is placed in the chassis with the processor and it does not scan any I/O
in
the chassis as an ASB module does.
Remote I/O Device Specifications
Remote I/O Device Catalog Numbers and Specifications

Cat. No.	Description	Backplane Current (mA) at 5V
1747-SN	Remote I/O Scanner Module	600 mA
1747-BSN	Backup Scanner Module	800 mA
1747-ASB	Remote I/O Adapter	375 mA
1747-DCM	Direct Communication Module	360 mA

Remote Device Network Specifications

Baud Rate		Maximum Cable Distance	Terminating Resistor Size
Using Extended Node Capabilify 15.2 K baud	$3048 \mathrm{~m}(10,000 \mathrm{ft})$	$82 \Omega 1 / 2 \mathrm{~W}$	
	230.4 K baud	$1524 \mathrm{~m}(5000 \mathrm{ft})$	$82 \Omega 1 / 2 \mathrm{~W}$
	57.6 K baud	$3048 \mathrm{~m}(2500 \mathrm{ft})$	$82 \Omega 1 / 2 \mathrm{~W}$
	$115.2 \mathrm{ft})$	$150 \Omega 1 / 2 \mathrm{~W}$	
	230.4 K baud	$1524 \mathrm{~m}(5000 \mathrm{ft})$	$150 \Omega 1 / 2 \mathrm{~W}$

Serial Network

The SLC 5/03, SLC 5/04, and SLC $5 / 05$ processors have a serial port which is configurable for RS-232 compatible serial communication. Use the serial port to connect to devices that:
communicate using DF1 protocol, such as modems, communication modules, programming workstations, or other Encompass partner devices. communicate using DH-485 protocol.
communicate using Modbus RTU Master as a new communication protocol to
third-party Modbus RTU Slave devices.
send and receive ASCII characters, such as ASCII terminals, bar code readers, and printers.
When configured for system mode, the serial port supports DF1 protocol. Use system mode to communicate with other devices on the serial link. You can select
the following DF1 modes:
DF1 full-duplex: provides communication between an SLC 500 controller and other
DF1 compatible devices. In point-to-point mode, the SLC 500 controller uses DF1
full-duplex protocol.
DF1 half-duplex master: polls and transmits messages between the master and each remote node. In master mode, the SLC 500 controller uses DF1 halfduplex polled protocol.
DF1 half-duplex slave: uses the controller as a slave station in a master/slave serial
network. In slave mode, the SLC 500 controller uses DF1 half-duplex protocol. DF1 radio modem: a hybrid between DF1 full-duplex and DF1 half-duplex, this
protocol is optimized for use with radio modem networks.
In system mode, the serial port also supports supervisory control and data acquisition
(SCADA) applications. SCADA systems allow you to monitor and control remote functions and processes using serial communication links between master and slave locations.

When configured for user mode, the serial port supports ASCII devices. Use the
SLC 500 ASCII instructions to send information to and receive information from these devices.

RS-232/DF1 Port Splitters

The 1747 Port Splitters let a single RS-232/DF1 full-duplex communication port on a controller split into two separate ports for simultaneous connection with two external devices. The Port Splitter supports the following: SLC 500, PLC-5, MicroLogix, ControlLogix, CompactLogix, and FlexLogix controllers.

The Port Splitter has three ports for Controller, Network and Programmer/HMI connections. It also has a connection for a +24 V external power source and status LEDs.

The Controller port connects to the RS-232/DF1 full-duplex port of a controller. The port configuration is set at DF1 full-duplex, 8 bits, no parity, 1 stop bit and CRC checksum on powerup. The port automatically sets the baud rate to 19.2 K or 38.4 K
baud taking advantage of the controller's maximum baud rate and can also match the controller's CRC or BCC checksum.
The Network port on the 1747-DPS脌connects to a 1761-NET-AIC, 1761-NET-DNI or 1761-NET-ENI module and receives any messages initiated from the controller. The network port can source power from the port splitter's external power supply to one of the above modules if a 1761-CBL-AM00 or 1761-CBL-HM02 cable is used.

The Network port on the 1747-DPS2 provides similar functionality, but can be configured for communications with DH-485, DF1 half-duplex (master or slave), DF1 full-duplex, and DF1 radio modem networks. The port is programmed for DH-485 communication at the factory.

The 1747-DPS2 port splitter has fully-isolated communication ports. Therefore, no
external isolation is required.
The Prog/HMI port connects to a programming station or HMI device (PanelView
Standard, PanelView Plus, VersaView CE) for respond only operations.
The serial configuration for the Network and Programmer/HMI ports on the 1747-DPS1 port splitter must be set to DF1 full-duplex, 8 bits, no parity, 1 stop bit,
19.2 K baud and CRC checksum.

The Network port on the 1747-DPS2 port splitter can be configured for communications with DH-485, DF1 half-duplex (master or slave), DF1 full-duplex, and DF1 radio modem networks.

Communication Cables

The following tables provide a description of available communication cables and a summary of cable connectivity.

Communication Cables

Cat. No.	Description
1761-CBL-AC00	SLC 5/03, 5/04, and 5/05 Communication Cable - This 45 cm (17.7 in) cable has two 9-pin DTE connectors and is used to connect the SLC 5/03, $5 / 04$, or $5 / 05$ processor RS232
1761-CBL-AP00	SLC 5/03, 5/04, and 5/05 Communication Cable - This $45 \mathrm{~cm}(17.7 \mathrm{in}$) cable has a 9-pin DTE and an 8-pin mini DIN connector and is used to connect the SLC $5 / 03$, $5 / 04$, or 5/05
1761-CBL-PM02	SLC 5/03, 5/04, and 5/05 Communication Cable - This $2 \mathrm{~m}(6.5 \mathrm{ft})$ cable has a 9-pin DTE and an 8-pin mini DIN connector and is used to connect the SLC $5 / 03,5 / 04$, or SLC 5/05
1761-CBL-AS03	RJ45 to 6-Pin Phoenix Connector Communication Cable - This 3 m (9.8 ft) cable is used to connect the SLC $5 / 01$, SLC $5 / 02$, and SLC $5 / 03$ processor RJ45 port to port 3 of the 1761-
1761-CBLAS09	RJ45 to 6-Pin Phoenix Connector Communication Cable - This 9.5 m (31.2 ft) cable is used to connect the SLC $5 / 01$, SLC 5/02, and SLC $5 / 03$ processor RJ45 port to port 3 of the
	SLC 5/03, 5/04, and 5/05 RS-232 Programmer Cable - This 3 m (10 ft) cable has two 9 -pin DTE connectors and is used to connect the SLC processor RS-232 channel (channel 0) to
1747-CP3	
	Processor to Isolated Link Coupler Replacement Cable - This 304.8 mm (12 in) cable is used to connect the SLC 500 processor to the Isolated Link Coupler (1747-AIC).
1747-C11	
1747-C13	Specialty Module to Isolated Link Coupler Cable - Use a 1747-C13 cable to connect a BASIC or KE module to an Isolated Link Coupler (1747-AIC). Also connects 1747-UIC RS485

Cable Connectivity Summary

For Connectivity Between These Devices		Preferred Cable Catalog Number	These Cables May Be Used
1746-A4, -A7, -A10, or -A13 Chassis	1746-A4, -A7, -A10, or -A13 Chassis	$1746-C 7$ $1746-C 9$ $1746-C 16$	-
1747-DTAM-E Data Table Access Module	SLC 500 Processors (DH-485 Channel)	$1747-$ C10	$1747-C 11$
1746-AIC Isolated Link Coupler	SLC 500 Processors (DH-485 Channel)	$1747-$ C20	

Step 3 - Select:

processor - based on memory, I/O, speed, communications, and programming requirements
memory modules
adapter sockets battery assembly

SLC 5/01
SLC 5/01

Selecting an SLC 500 Processor

With SLC 500 Modular Hardware Style controllers, you select the processor, power supply, and I/O modules to fit your application. Modular style chassis are available in
$4,7,10$, and 13 -slot versions. See Selecting an SLC 500 Chassis on page 64 for details.

This processor offers a basic set of 51 instructions with the choice of 1 K or 4 K of memory in a modular hardware configuration. Modular I/O systems that include an
SLC 5/01 processor can be configured with a maximum of three chassis (30 total slots) and from 4 I/O points to a maximum of 3940 I/O points.

This processor offers additional complex instructions, enhanced communications, faster scan times than the SLC 5/01, and extensive diagnostics that allow it to function in more complex applications. Modular I/O systems can be configured with a maximum of 3 chassis (30 total slots) and from 4 I/O points to a maximum of 4096 I/O points.

This processor provides $8 \mathrm{~K}, 16 \mathrm{~K}$, or 32 K of memory. A built-in RS-232 channel gives
you the flexibility to connect to external intelligent devices without the need for additional modules. Modular I/O systems can be configured with a maximum of 3 chassis (30 total slots) and from 4 I/O points to a maximum of 4096 I/O points.

The standard DH-485 port has been replaced with a $\mathrm{DH}+$ port, providing highspeed
SLC 5/04-to-SLC 5/04 communications and direct connection to PLC-5 controllers. Modular I/O systems can be configured with a maximum of 3 chassis (30 total slots)
and from 4 I/O points to a maximum of 4096 I/O points. The available memory options are $16 \mathrm{~K}, 32 \mathrm{~K}$, or 64 K . In addition, there is an SLC 5/04P option, which is designed specifically for the Plastics Industry and contains ERC2 algorithms for Plastics Machinery Control.
The SLC 5/05 processor provides the same functionality as the SLC 5/04 processor
with standard Ethernet communications rather than $\mathrm{DH}+$ communications. Ethernet communication occurs at 10 Mbps or 100 Mbps , providing a high performance network for program upload/download, online editing, and peer-to-peer messaging. Modular I/O systems can be configured with a maximum of 3 chassis (30 total slots)
and from 4 I/O points to a maximum of 4096 I/O points.

Controller Specifications

SLC 500 Modular Controllers Specifications

Specification	SLC 5/01		SLC 5/02	SLC 5/03			SLC 5/04			SLC 5/05 \ddagger		
Cat. No. 1747-	L511	L514	L524	L531	L532	L533	L541	L542	L543	L551	L552	L553
Memory Size (Words)	1K	4K	4K	8K	16 K	32 K	16 K	32 K	64 K	16 K	32 K	64 K
Backplane Current (mA) at 5	90 mA			500 mA			1000 mA			1000 mA		
Backplane Current (mA) at 24	V 0 mA			175 mA			200 mA			200 mA		
Digital I/O, Max.	7880		8192									
Max. Local Chassis/Slots	3/30											
On-Board Communications	DH-485 Slave		DH-485	DH-485 and RS-232			DH+ and RS-232			Ethernet and RS-232		
Optional Memory Module	EEPROM			flash EEPROM								
Programming	RSLogix 500											
Programming Instructions	52		71	107								
Typical Scan Time *	$8 \mathrm{~ms} / \mathrm{K}$		$4.8 \mathrm{~ms} / \mathrm{K}$	$1 \mathrm{~ms} / \mathrm{K}$			$0.9 \mathrm{~ms} / \mathrm{K}$					
Program Scan Hold-up Time After Loss of Power	$20 \mathrm{~ms} \ldots 3 \mathrm{~s}$ (dependent on power supply loading)											
Bit Execution (XIC)	$4 \mu \mathrm{~s}$		$2.4 \mu \mathrm{~s}$	$0.44 \mu \mathrm{~s}$			$0.37 \mu \mathrm{~s}$					
Clock/Calendar Accuracy	N/A			$\begin{aligned} & \pm 54 \text { seconds } / \text { month @ } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & \pm 81 \text { seconds } / \text { month @ } 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$								

* The scan times are typical for a 1 K ladder logic program consisting of simple ladder logic and communication servicing. Actual scan times depend on your program size, instructions used, and
the communication protocol
SLC $5 / 04$ processors manufactured prior to April 2002 draw $200 \mathrm{~mA} @ 24 \mathrm{~V}$ dc. Check the label to verify your processor's current draw.
\pm The $5 / 05$ Series C processors can communicate to 100 Mbps and support increased connections: 1747 -L551 $=32$ connections; 1747 -L552 $=48$ connections; 1747 -L553 $=64$ connections.

SLC 500
Programming Instruction Set

The following table shows the SLC 500 instruction set listed within their functional groups.

SLC Programming Instruction Set

Functional Group	Description	Instruction(s)	SLC 5/01	SLC 5/02	SLC 5/03	SLC 5/04	SLC 5/05
Bit	monitor and control status of bits	XIC, XIO, OTE, OTL, OTU, OSR					
Timer and Counte	r control operations based on time or number of eve	T1SN, TOF, TU, CTD, RTO, RES, RHC, TDF					
Compare	compare values using an expression or specific compare instruction	EQU, NEQ, LES, LEQ, GRT, GEQ, MEQ					
		LIM					
Compute	evaluate arithmetic operations using an expression specific arithmetic instruction	ADD, SUB, MUL, DIV, DDV, CLR, NEG					
		\$QR, SCL					
		SCP, ABS, CPT, SWP, ASN, ACS, ATN, COS, L SIN,	N, LOG,				
Logical	perform logical operations on bits	TAN, XPY, RMP- AND, OR, XOR, NOT					
Conversion	perform conversion between integer and $B C D$ valu and radian and degree values	TOD, FRD, DCD					
		DEG, RAD, ENC					
Move	move and modify bits	MOV, MVM, RPC					
File	perform operations of file data	COP, FLL, BSL, BSR					
		FFL, FFU, LFL, LFU, FBC, DDT					
Sequencer	monitor consistent and repeatable operations	SQO, SQC					
		SQL					
Program Control	change the flow of ladder program execution	JMP, LBL, JSR, SBR, RET, MCR, TND, SUS, IIM END	IOM,				
		REF					
User Interrupt	interrupt your program based on defined events	STD, STE, STS, IID, IIE, RPI, INT					
Process Control	close-looped control	PID					
Communications	read or write data to another station	MSG, SVC, BTR, BTW, CEM, DEM, EEM (SLC 5 only)					
ASCII	read, write, compare, convert ASCII strings	ABL, ACB, ACI, ACL, ACN, AEX, AHL, AIC, ARD ASC, ASR, AWA, AWT	ARL,				

Memory Modules

These optional memory modules provide non-volatile memory in convenient modular
form. The modules plug into a socket on the processor.
Memory Module Specifications

Cat. No.	Description
$1747-\mathrm{M1}$	1 K, EEPROM Memory Module for SLC 5/01 Processors
$1747-\mathrm{M} 2$	4 K, EEPROM Memory Module for SLC 5/01 and SLC 5/02 Processors
$1747-\mathrm{M13}$	64 K, Flash EPROM Memory Module for SLC 5/03, SLC 5/04, and SLC 5/05 Series C (or later) OS Firmware only

Adapter Sockets

Adapter sockets are required when using commercial PROM programmers to program and erase memory modules. The memory module fits into the adapter socket, and then the adapter socket fits into the zero insertion force (ZIF) socket on
the PROM burner.
Adapter Socket Descriptions

Cat. No.	Description
1747-M5	SLC 5/01 and SLC 5/02 Adapter Socket - Five Sockets Per Package
1747-M15	SLC 5/03, SLC 5/04, and SLC 5/05 Adapter Socket for 1747-M13

Program Storage Device

The 1747-PSD simplifies PLC program development, backup and upgrade shipping issues for SLC $5 / 03$ and higher processors, as well as MicroLogix controllers. The PSD
allows you to:
upload and download to your industrial programming station using RSLogix 500 software.
back up PLC programs without using a computer or programming software.
make multiple copies of an installed program.
Before downloading a program, the PSD performs error-checking to ensure that the program is compatible with the target PLC. It also provides automatic baud rate detection, CRC or BCC error detection, and connection via a standard RS-232, 9-pin, D-shell connector. Stored programs are retained in Flash EPROM memory even if the batteries or the power supply fails.

Program Storage Device Specifications

Cat. No.	$1747-$ PSD
Compatible Controllers	SLC 5/03 and higher, MicroLogix 1000, 1100, 1200, and 1500
Memory Size	64 K words maximum
Memory Type	Flash EPROM
Operating Power	(2) AAA batteries, or power supply (7..30V dc, 250 mA max)
Compatible Cables	$1747-\mathrm{CP} 3$ and $1761-\mathrm{CBL}-\mathrm{PM} 02$ (not included)

Upgrade Kits

SLC 500 OS upgrade kits allow you to access the latest functional enhancements for
your existing controller.
SLC 500 Upgrade Kit Descriptions

Cat. No.	Description
$1747-$ OS302	SLC 5/03 Upgrade Kit - includes 5 upgrade labels
$1747-$ OS401	SLC 5/04 Upgrade Kit - includes 5 upgrade labels
$1747-$ DU501	SLC 5/05 Flash Upgrade Kit - includes CD, instructions, and 5 upgrade labels
$1747-$ RL302	SLC 5/03 Upgrade Kit Labels - includes 10 labels
$1747-$ RL401	SLC 5/04 Upgrade Kit Labels - includes 10 labels
$1747-$ RL501	SLC 5/05 Upgrade Kit Labels - includes 10 labels

1747-BA Lithium Battery Assembly

Backup power for RAM is provided by a replaceable lithium battery. The lithium battery provides backup for approximately five years for the 1747-L511 and two years
for the 1747-L514. It provides backup for approximately two years for SLC 5/02, 5/03,
$5 / 04$, and SLC 5/05, as well. A battery LED on the processor alerts you when the battery voltage is low.

Step 4 - Select:

chassis with sufficient slots (consider possible expansion)
card slot fillers for open slots interconnect cables

4-Slot Chassis

7-Slot Chassis

13-Slot Chassis

SLC modular chassis provide flexibility in system configuration. Four chassis sizes are available to suit your application needs. Choose from 4 -slot, 7 -slot, 10-slot, and 13slot chassis based on your modular hardware component requirements. The SLC 1746 modular chassis houses the processor or I/O adapter module and the I/O modules.

Each chassis requires its own power supply, which mounts on the left side of the chassis. A maximum of 3 chassis can be connected with chassis interconnect cables
(not included). If an interconnect cable is required, select a chassis interconnect cable from the following table.

Chassis and Cable Descriptions

Cat. No.	Description
$1746-\mathrm{A} 4$	4-Slot Chassis
$1746-\mathrm{A} 7$	7-Slot Chassis
$1746-\mathrm{A} 10$	10-Slot Chassis
$1746-\mathrm{A} 13$	13-Slot Chassis
$1746-\mathrm{C} 7$	Chassis Interconnect Cable - ribbon cable used when linking modular style chassis up to $152.4 \mathrm{~mm} \mathrm{(6} \mathrm{in)} apart in$. an enclosure.
$1746-\mathrm{C} 9$	Chassis Interconnect Cable - used when linking modular style chassis from $152.4 \mathrm{~mm} \mathrm{(6} \mathrm{in)} up to 914.4 mm$. (36 in.) apart in an enclosure.
$1746-\mathrm{C} 16$	Chassis Interconnect Cable - used when linking modular style chassis from $0.914 \mathrm{~m} \mathrm{(36} \mathrm{in)} .\mathrm{up} \mathrm{to} 1.27 \mathrm{~m}(50 \mathrm{in})$. apart in an enclosure.

1746-N2 Card Slot Filler

Use the 1746-N2 card slot filler to protect unused slots in the chassis from dust
and debris.

Chassis Dimensions

The figures below provide mounting dimensions for each of the modular chassis and
the available power supply options.
Important: In addition to dimensions, there are important spacing, heat, and grounding requirements which must be considered when mounting an SLC chassis. Refer to the SLC 500 Modular Chassis Installation Instructions, publication number 1746-IN016 for more information.

4-Slot Modular Chassis

(1) Dimensions for 1746-P1 Power Supply
(2) Dimensions for 1746-P2, -P3, -P5, -P6 and -P7 Power Supplies.
(3) Dimensions for 1746-P4 Power Supply.

7-Slot Modular Chassis

10-Slot Modular Chassis

13-Slot Modular Chassis

Step 5 - Select:
one power supply for each chassis (Consider power supply loading of the entire system and capacity for system expansion.)

Selecting SLC 500 Power Supplies

When configuring a modular system, you must have a power supply for each chassis.
Careful system configuration will result in optimal system performance. Excessive loading of the power supply outputs can cause a power supply shutdown or premature failure.

See the power supply selection example in the next section and use the blank worksheet provided at the end of this guide to determine which power supply is appropriate for your system. You need one worksheet for each chassis.
TIP: Consider future system expansion when choosing power supplies.
The SLC system features three AC power supplies and four DC power supplies. The power supply mounts on the left side of the chassis with two screws. For AC power supplies, $120 / 240$ volt selection is made by placing the jumper to match the input voltage. SLC power supplies have an LED that illuminates when the power supply is
functioning properly.
Power supplies are designed to withstand brief power losses. Power loss does not affect system operation for a period between 20 ms and 3 s , depending on the load.

Power Supply Catalog Numbers and Specifications

Cat. No.	Line Voltage	Current Capacity (Amps) at 5V	Current Capacity (Amps) at 24 V	ser Current Capacity	Inrush Current, Max.
1746-P1	$\begin{aligned} & 85 \ldots . .132 / 170 \ldots 265 \mathrm{~V} \text { ac, } 47 \ldots 63 \\ & \mathrm{~Hz} \end{aligned}$	2A	0.46 A	0.2 A @ 24V dc	20 A
1746-P2	$\begin{aligned} & 85 \ldots 132 / 170 \ldots 265 \mathrm{~V} \text { ac, } 47 \ldots 63 \\ & \mathrm{~Hz} \end{aligned}$	5A	0.96 A	0.2 A @ 24V dc	20 A
1746-P3	$19.2 . .28 .8 \mathrm{~V}$ dc	3.6 A	0.87 A	-	20 A
1746-P4	$\left.\begin{aligned} & 85 \ldots 132 / 170 \ldots 250 \mathrm{~V} \text { ac, } 47 \ldots 63 \\ & \mathrm{~Hz} \end{aligned} \right\rvert\,$	10 A	2.88 A*	1 A @ 24V dc *	45 A
1746-P5	$90 . . .146 \mathrm{~V}$ dc	5A	0.96 A	0.2 A @ 24V dc	20 A
1746-P6	$30 . . .60 \mathrm{~V} \mathrm{dc}$	5A	0.96 A	0.2 A @ 24V dc	20 A
1746-P7	$10 . . .30 \mathrm{~V} \mathrm{dc}$, isolated	12 V dc input: 2 A 24 V dc input: 3.6 A	12 V dc input: 0.46 A 24 V dc input: 0.87 A	-	20 A

* Total of all output power (5 V backplane, 24 V backplane, and 24 V user source) must not exceed 70 W .

General 1746-Px Power Supply Specifications

Specification	Description
Operating Temperatulu(...60 ${ }^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$	
Relativent capacity derated by 5% above $55^{\circ} \mathrm{C}$ for P1, P2, P3, P5, P6 and P7, no derating for P4)	$5 . . .95 \%$ non-condensing
Wiring	$\# 14 \mathrm{AWG}\left(2 \mathrm{~mm}_{2}\right)$

Power Supply Selection Example

Select a power supply for chassis 1 and chassis 2 in the control system below. For a
detailed list of device load currents, see the next section.

Slot 0123

Slot Numbers	Description	Cat. No.	Backplane Current at 24V dc
0	Processor Unit	$1747-$ L514	0.105 A
1	Input Module	$1747-$ IV8	0.000 A
2	Transistor Output Module	$1746-$ OB8	0.000 A
3	Triac Output Modules	$1746-$ OA16	0.000 A
Peripheral Device	Isolated Link Coupler	$1747-\mathrm{AIC}$	0.085 A
Total Current		0.190 A	

Power supply 1746-P1 is sufficient for Chassis \#1. The internal current capacity for
$1746-\mathrm{P} 1$ is 2 A at 5 V dc and 0.46 A at 24 V dc.

Slot 0123456

Slot Numbers	Description	Cat. No.	Backplane Current at 24V dc
0	Processor Unit	$1747-$ L514	0.105 A
1	Output Module	$1747-$ OW16	0.180 A
2	Combination Module	$1746-$ IO12	0.070 A
$3,4,5,6$	Analog Output Modules	$1746-\mathrm{NO} 4 \mathrm{I}$	$0.780 \mathrm{~A}(4 \times 0.195)$
Peripheral Device	Isolated Link Coupler	$1747-\mathrm{AIC}$	0.085 A
Peripheral Device	USB to DH-485 Interface	$1747-$ UIC	N / A
Total Current		1.220 A	

Power Supply 1746-P4 is sufficient for Chassis \#2. The internal current capacity for
this power supply is 10 A at 5 V dc and 2.88 A at 24 V dc; not to exceed 70 Watts.
If you have a multiple chassis system, make copies of the blank Power Supply Worksheet provided at the end of this guide. The next page provides an example
worksheet for the system above.

Power Supply Worksheet Example

Procedure							
1. For each slot of the chassis that contains a module, list the slot number, catalog number of module, and its 5 V and 24 V maximum currents. Also include the power consumption of any peripheral							
devices that may be connected to the procesChassis Number 1		Sor other than a DTAM, HHT, or PIC - the power consumplion of these devices is accountedMaximum CurrentsChassis Number 2				or in the power consumption of the processor:Maximum Currents	
Slot Number	Cat. No.	5 V dc	24 V dc	Slot Number	Cat. No.	5 V dc	24 V dc
0	1747-L511	0.350 A	0.105 A	0	1747-L514	0.350 A	0.105 A
1	1746-IV8	0.050 A	-	1	1746-OW16	0.170 A	0.180 A
2	1746-OB8	0.135 A	-	2	1746-NO41	0.055 A	0.195 A
3	1746-OA16	0.370 A	-	3	1746-NO41	0.055 A	0.195 A
				4	1746-NO41	0.055 A	0.195 A
				5	1746-NO41	0.055 A	0.195 A
				6	1746-IO12	0.090 A	0.070 A
Peripheral Device	1747-AIC		0.085 A	Peripheral Device	1747-AIC		0.085 A
Peripheral Device				Peripheral Device			
2. Add loading currents of all system devices and 24 V dc to determine Total Current.		$\begin{aligned} & s \text { at } 5 \\ & 0.905 \mathrm{~A} \end{aligned}$	0.190 A	2. Add loading currents of all system devices and 24 V dc to determine Total Current.		\$t 5.830 A	1.220 A
3. For 1746-P4 power supplies, calculate total power consumption of all system devices. If not using a 1746-P4, go to step							
4.urrent		Multiply By	=Watts	Current		Multiply by	= Watts
Total Current at 5 V	0.905 A	5 V	4.525 W	Total Current at 5V dc	0.830 A	5 V	4.15 W
Total Current at 24 V	dc 0.190 A	24 V	4.56 W	Total Current at 24 V d	1.220 A	24 V	29.28 W
User Current at 24V	dc 0.500 A	24 V	12.00 W	User Current at 24 V d $¢$	0.500 A	24 V	12.00 W
Add the Watts values to determine Total Power (cannot exceed 70 W)			21.085 W	Add the Watts values to determine Total Power (cannot exceed 70 W)			45.43 W

 Current

onsumptio	rassisist	$\begin{aligned} & \text { ntermal } \\ & \text { Internal } \end{aligned}$	$\begin{aligned} & \text { ty for the } \\ & \text { city } \end{aligned}$	forboth 5		Internal	
Catalog Number		5 V dc	24 V dc	Catalog Nu		5 V dc	24 V dc
1746-P1		2.0 A	0.46 A	1746-P1		2.0 A	0.46 A
1746-P2		5.0 A	0.96 A	1746-P2		5.0 A	0.96 A
1746-P3		3.6 A	0.87 A	1746-P3		3.6 A	0.87 A
1746-P4 (See step 3)		10.0 A	2.88 A	1746-P4 (10.0 A	2.88 A
1746-P5		5.0 A	0.96 A	1746-P5		5.0 A	0.96 A
1746-P6		5.0 A	0.96 A	1746-P6		5.0 A	0.96 A
1747-P7*	12V input	2.0 A	0.46 A	1747-P7*	12V Input	2.0 A	0.46 A
	24 V input	3.6 A	0.87 A		24 V Input	3.6 A	0.87 A
Required Power Supply		1746-P1		Required Power Supply		1746-P4	

[^4]
Power Supply Loading and Heat Dissipation

Use the values in the following tables to calculate the power supply loading for each chassis in your SLC modular application.
Processors

Cat. No.	Backplane C Backplane Current (mA) at 5 V 2	$4 \mathrm{rent}(\mathrm{~mA}) \text { at }$	Watts per Point	Thermal Dissipation, Min.	Thermal Dissipation, Max.
1747-L511	90 mA	0 mA	N/A	1.75 W	1.75 W
1747-L514	90 mA	0 mA	N/A	1.75 W	1.75 W
1747-L524	350 mA	105 mA	N/A	1.75 W	1.75 W
1747-L531	500 mA	175 mA	N/A	1.75 W	1.75 W
1747-L532	500 mA	175 mA	N/A	2.90 W	2.90 W
1747-L533	500 mA	175 mA	N/A	2.90 W	2.90 W
1747-L541	1000 mA	200 mA	N/A	4.00 W	4.00 W
1747-L542	1000 mA	200 mA	N/A	4.00 W	4.00 W
1747-L543	1000 mA	200 mA	N/A	4.00 W	4.00 W
1747-L551	1000 mA	200 mA	N/A	4.00 W	4.00 W
1747-L552	1000 mA	200 mA	N/A	4.00 W	4.00 W
1747-L553	1000 mA	200 mA	N/A	4.00 W	4.00 W

Digital Input Modules

Cat. No.	Backplane Cy\|rrent (mA) at Backplane Current (mA) at 5 V 24 V		Watts per Point	Thermal Dissipation, Min.	Thermal Dissipation, Max.
1746-IA4	35 mA	0 mA	0.270 W	0.175 W	1.30 W
1746-IA8	50 mA	0 mA	0.270 W	0.250 W	2.40 W
1746-IA16	85 mA	0 mA	0.270 W	0.425 W	4.80 W
1746-IB8	50 mA	0 mA	0.200 W	0.250 W	1.90 W
1746-IB16	50 mA	0 mA	0.200 W	0.425 W	3.60 W
1746-IB32*	106 mA	0 mA	0.200 W	0.530 W	6.90 W
1746-IC16	50 mA	0 mA	0.220 W	0.425 W	3.95 W
1746-IG16	140 mA	0 mA	0.270 W	0.700 W	1.00 W
1746-IH16	85 mA	0 mA	0.320 W	0.675 W	3.08 W
1746-IM4	35 mA	0 mA	0.350 W	0.175 W	1.60 W
1746-IM8	50 mA	0 mA	0.350 W	0.250 W	3.10 W
1746-IM16	85 mA	0 mA	0.350 W	0.425 W	6.00 W
1746-IN16	85 mA	0 mA	0.350 W	0.425 W	6.00 W
1746-ITB16	50 mA	0 mA	0.200 W	0.425 W	3.625 W
1746-ITV16	85 mA	0 mA	0.200 W	0.425 W	3.625 W
1746-IV8	50 mA	0 mA	0.200 W	0.250 W	1.90 W
1746-IV16	85 mA	0 mA	0.200 W	0.425 W	3.60 W
1746-IV32*	106 mA	0 mA	0.200 W	0.530 W	6.90 W

* Power supply loading for series D and later modules.

Digital Output Modules

| | $\begin{array}{l}\text { Backplane Curent (mA) at } \\ \text { Cat. No. }\end{array}$ | | | Backplane Current (mA) at 5V 24 V |
| :--- | :--- | :--- | :--- | :--- | :--- |$)$

* Power supply loading for series D and later modules.

Digital Combination Modules

Cat. No.	Backplane Cyrrent (mA) at Backplane Current (mA) at 5 V 24 V		Watts per Point	Thermal Dissipation, Min.	Thermal Dissipation, Max.
1746-IO4	30 mA	25 mA	0.270 W per input point 0.133 W per output point	0.75 W	1.60 W
1746-108	60 mA	45 mA	0.270 W per input point 0.133 W per output point	1.38 W	3.00 W
1746-IO12	90 mA	70 mA	0.270 W per input point 0.133 W per output point	2.13 W	4.60 W
1746-IO12DC	80 mA	60 mA	0.200 W per input point 0.133 W per output point	1.84 W	3.90 W

Analog Input Modules
$\left.\begin{array}{l|l|l|l|l|l}\hline & \begin{array}{r}\text { Backplane C }\end{array} \text { rrent }(\mathrm{mA}) \text { at } & & & \\ \text { Cat. No. } & \text { Backplane Current }(\mathrm{mA}) \text { at } 5 \mathrm{~V} 24 \mathrm{~V}\end{array}\right)$

Analog Output Modules
$\left.\begin{array}{l|l|l|l|l|l}\hline & \begin{array}{r}\text { Backplane Cyrent }(\mathrm{mA}) \text { at }\end{array} & & & \\ \text { Cat. No. } & \text { Backplane Current }(\mathrm{mA}) \text { at } 5 \mathrm{~V} 24 \mathrm{~V}\end{array}\right)$

* With jumper set to RACK, otherwise 0.000 .

Analog Combination Modules
$\left.\begin{array}{l|l|l|l|l|l}\hline & \begin{array}{rl}\text { Backplane C } & \text { rrent }(\mathrm{mA}) \text { at }\end{array} & \text { Watts per Point } & & \\ \text { Cat. No. } & \text { Backplane Current }(\mathrm{mA}) \text { at 5V } 24 \mathrm{~V}\end{array}\right)$

Specialty Modules
$\left.\begin{array}{l|l|l|l|l|l}\hline & \begin{array}{rl}\text { Backplane Current (mA) at } \\ \text { Cat. No. }\end{array} & \text { Backplane Current (mA) at 5V } 24 \mathrm{~V}\end{array}\right)$

* When using the 1747-BAS or 1747-KE modules to supply power to an AIC, add 0.085 A (the current loading for the AIC) to the 1747-BAS or 1747 -KE module's power supply loading value at 24 V dc .

Communication Modules

Cat. No.	Backplane C Backplane Current (mA) at 5 V	$24 \mathrm{~V}$	Watts per Point	Thermal Dissipation, Min.	Thermal Dissipation, Max.
1747-ACN15	900 mA	0 mA	N/A	4.50 W	4.50 W
1747-ACNR15	900 mA	0 mA	N/A	4.50 W	4.50 W
1747-ASB	375 mA	0 mA	N/A	1.875 W	1.875 W
1747-BSN	800 mA	0 mA	N/A	4.00 W	4.00 W
1747-DCM	360 mA	0 mA	N/A	1.80 W	1.80 W
1747-KE	150 mA	$40 \mathrm{~mA} *$	N/A	3.75 W	3.80 W
1747-KFC15	640 mA	0 mA	N/A	3.20 W	3.20 W
1747-SCNR	900 mA	0 mA	N/A	4.50 W	4.50 W
1747-SDN	500 mA	- mA	N/A	2.50 W	2.50 W
1747-SN	600 mA	0 mA	N/A	4.50 W	4.50 W

* When using the 1747-BAS or 1747-KE modules to supply power to an AIC, add 0.085 A (the current loading for the AIC) to the 1747-BAS or 1747-KE module's power supply loading value at 24 V dc.
Peripheral Devices

Cat. No.	Backplane C Backplane Current (mA) at 5V	4 V rent (mA) at	Watts per Point	Thermal Dissipation, Min.	Thermal Dissipation, Max.
1747-AIC	0 mA	85 mA	N/A	2.00 W	2.00 W
1747-UIC*	N/A	N/A	N/A	N/A	N/A
1747-PSD	N/A	N/A	N/A	N/A	N/A
1761-NET-AIC	0 mA	0 mA	N/A	2.50 W	2.50 W
1761-NET-DNI	0 mA	0 mA	N/A	2.50 W	2.50 W
1761-NET-ENIW	0 mA	0 mA	N/A	2.50 W	2.00 W

[^5]
Power Supply Heat Dissipation Graphs

Use the graphs below for determining the power supply dissipation in step 2 of the
Example Worksheet for Calculating Heat Dissipation.

	1746-P7 Power Supply Change in Power Power Supply Dissipation (Watts)					20	18
Dissipation due to Output Loading							
	14						

Heat Dissipation Worksheet Example

Procedure for calculating the total heat dissipation for the controller								
1. Write the total watts dissipated by the processor, I/O, specialty modules, and any peripheral devices attached to the								
Chassis Number 1			Chassis Number 2			Chassis Number 3		
Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)
0	1747-L511	1.75	4	1746-IA16	4.8			
1	1746-BAS	3.8	5	1746-IA16	4.8			
2	1746-IAB	2.4	6	1746-OW16	5.5			
3	1746-OV8	6.9	7	1746-OW16	5.7			
Peripheral Devid	e 1747-DTAM	2.5	Peripheral Device			Peripheral Dev		
Peripheral Deviqe			Peripheral Device			Peripheral Dev		
2. Add the heat dissipation values together for your total chassis heat dissipation.		17.35	2. Add the heat dissipation values togeth for your total chassis heat dissipation.		0.8	2. Add the heat dissipation values together for your total chassis heat dissipation.		
3. Calculate the power supply loading for each chassis (minimum watts) for each device. *								
Chassis Number 1			Chassis Number 2			Chassis Number 3		
Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)
0	1747-L511	1.75	4	1746-IA16	0.425			
1	1746-BAS	3.75	5	1746-1A16	0.425			
2	1746-IA8	0.25	6	1746-OW16	5.17			
3	1746-OV8	0.675	7	1746-OW16	5.17			
User Power			User Power		2.4	User Power		
Peripheral Deviqe 1747-DTAM		2.5	Peripheral Device			Peripheral Device		
4. Add the heat dissipation values together for your power supply loading. 8.925			4. Add the heat dissipation values togeth for your power supply loading.		13.59	4. Add the heat dissipation values togeth for your power supply loading.		
5. Use the power supply loading (ster for each chassis and the graphs on p 76 to determine power supply dissipa		4) age 13.0 tion.	5. Use the power supply loading (step 4) each chassis and the graphs on page 76 determine power supply dissipation.		$\left\lvert\, \begin{aligned} & \text { for } \\ & \text { to15.0 } \end{aligned}\right.$	5. Use the power supply loading (step 4) each chassis and the graphs on page 76 determine power supply dissipation.		or
6. Add the chassis dissipation (step 2 the power supply dissipation (step 5).		$\begin{aligned} & \text { to } \\ & 30.35 \end{aligned}$	6. Add the chassis dissipation (step 2) to power supply dissipation (step 5).		the 35.8	6. Add the chassis dissipation (step 2) to power supply dissipation (step 5).		he
7. Add the values together from 6 step across to the right.								66.15
8. Convert value from step 7 to BTUs/hr by multiplying total heat dissipation of controller by 3.414.								225.84

* If you have a device connected to user power, multiply 24 V dc by the amount of current used by that device. Include user power in the total power supply loading.

Step 6 - Select:
the appropriate RSLogix 500 package for your application
other software packages, such as RSNetworx for ControlNet or RSNetworx for DeviceNet, if required

Selecting Programming Software

Familiar ladder diagram programming makes the SLC 500 family easy to program
using a personal computer and RSLogix 500 Programming Software.
The RSLogix 500 ladder logic programming package was the first PLC programming software to offer unbeatable productivity with an industry-leading user interface. RSLogix 500 is compatible with programs created using Rockwell Software's DOSbased programming packages for the SLC 500 and MicroLogix families of processors,
making program maintenance across hardware platforms convenient and easy.
RSLogix 500 may be used with Windows 2000, Windows XP, or Windows Vista.

Flexible, Easy-to-use Editing Features

Create application programs without worrying about getting the syntax correct. A
Project Verifier builds a list of errors that you can navigate through to make corrections at your convenience.
Powerful online editors allow you to modify your application program while the process is still operating. The Test Edits feature tests the operation of your modification before it becomes a permanent part of the application program. Online
and offline editing sessions are limited only by the amount of available RAM.
Drag-and-drop editing lets you quickly move or copy instructions from rung to rung within a project, rungs from one subroutine or project to another, or data table elements from one data file to another.

Context menus for common software tools are quickly accessible by clicking the right mouse button on addresses, symbols, instructions, rungs, or other application objects. This convenience provides you with all the necessary functionality to accomplish a task within a single menu. This is a time-saving feature because you don't have to remember the placement of functionality options in the menu bar.

Point-and-Click I/O Configuration

The easy-to-use I/O Configurator lets you click or drag-and-drop a module from an all-inclusive list to assign it to a slot in your configuration. Advanced configuration, required for specialty and analog modules, is easily accessible. Convenient forms speed entry of configuration data. An I/O auto configuration feature is also available.

Powerful Database Editor

Use the Symbol Group Editor to build and classify groups of symbols so that you can
easily select portions of your recorded documentation for use across multiple PFpeestymbol Picker list allows you to assign addresses or symbols to your ladder logic instructions simply by clicking on them.

Export your database to Comma-Separated-Value (CSV) format to use or manipulate the data in your favorite spreadsheet program. When finished, simply import the CSV file into RSLogix 500.

Diagnostics and Troubleshooting Tools

Quickly locate the specific area in the application that is causing a problem with Advanced Diagnostics. Diagnose the interaction of output instructions within a section of your program by viewing them at the same time.

Simultaneously examine the status of bits, timers, counters, inputs and outputs all in
one window with the Custom Data Monitor. Each application project you create can
have its own Custom Data Monitor window.
Use the tabbed Status displays to easily review status bit settings specific to your application programming, including Scan Time and Math Register information, Interrupt settings, and more.

Assistance on Demand

Comprehensive online help provides an instruction reference as well as step by step instructions for common tasks.

RSLogix 500 Programming Packages
All of the packages described in the table below are English versions on CDROM.
They can be used with Windows 2000, Windows XP, or Windows Vista. RSLogix 500 Software

Description	Cat. No.
RSLogix 500 Programming for the SLC 500 and MicroLogix Families	$9324-$ RL0300ENE
RSLogix 500 Starter	$9324-$ RL0100ENE
RSLogix 500 Professional	$9324-$ RLO700NXENE

The following table shows which functions are supported by the three RSLogix 500, Version 8.x software packages. Functions that are supported are marked with a " ".

Function	Starter	Standard	Pro
Editor			
Drag-and-drop Editing			
Drag-and-drop Data Table Data			
Drag-and-drop Between Projects			
ASCII Editor (Rung)			
Search			
Replace			
Replace with Descriptors			
Cut/Copy/Paste (C/C/P)			
Data Table Usage			
Library Utility			
Indexed Library Load			
"Quick Key" Editing			
Automatic Addressing			
Intellisense-style Address Wizard			
User Workspace			
Instruction Pallette			
Portal "Dot" Commands			
Intelligent Goto			
Project Backup Span Volume			
Secondary Save Path			
Network Configuration (RSNetWorx Cnet, Dnet, ENet included)			
User Annotation			
Symbol (20 char.)			
Parent/Child Symbol			
Address/Instruction Description (5x20 char.)			
Parent/Child Address Description			
Rung Comment (64K char.)			
Rung Comment Association (File:Rung Output Address)			
Page Title (1x80 char.)			
Microsoft Excel as Database Editor			
Diagnostics/Troubleshooting			
Program Compare			
Data Table Compare			
I/O Configuration Compare			
Channel Configuration Compare			
Compare Visualization			
Custom Data Monitor			
Diagnostic Graphical Monitor - Animated Mgraphiucs (Guage, Chart, Button, Chart)			

Function	Starter	Standard	Pro
Online Monitor			
Program Execution Monitor			
Data Table Monitor			
Embedded Online Cross-reference			
Reporting			
Program Report			
Program Report with Embedded Cross-reference			
Cross-reference Report			
Data Table Contents Report			
Database Content Report			
System Configuration Report			
PID Configuration Report			
MSG Configuration Report			
Custom Data Monitor Report			
Recipe Monitor Reprot			
"Smart" I/O Configuration Report			
Margins/Header/Footer			
Custom Title Page			
Automation			
Author Microsoft VBA Scripts			
Execute Microsoft VBA Scripts			
Keyboard Macros (Shareware)			
Security			
Workstation User Security			
User Security Server (Add-on)			
User Security Client (Requires Security Server)			
User Assistance			
Copy Protection			
Online Instruction Set Help			
Online User Reference Manual			
Online Context Help			
Custom User-authored Help			
Processor Support			
SLC 5/03, 5/04, 5/05 Series C			
SLC 5/01, 5/02, 5/03, 5/04, 5/05			
SLC L20, L30, L40			
MicroLogix 1500			
MicroLogix 1200			
MicroLogix 1100 with Analog			

Important: You must provide a means of communication between the PC and the processor. The table below indicates with an " ", which cables are compatible with the SLC 5/01 through 5/05 processors.

Processor	SLC 5/01	SLC 5/02	SLC 5/03	SLC 5/04	SLC 5/05
1747-UIC	requires 1747-C13		requires 1747-C13 requires 1747-CP3	requires 1747-CP3	
1747-CP3					
1784-PKTX (D)					
	requires 1784-CP14			requires 1784-CP13	
1784-PCMK					
	requires 1784-PCM4			requires 1784-PCM6	
1784-U2DHP					
10/100Base-T Ethernet					

RSLogix 500 Software Support

Warranty

Rockwell Software provides a full one-year limited warranty for RSLogix 500 programming software products.

Support Continuation Agreements

You can purchase additional one-year terms of support. Orders for support continuation agreements must be accompanied by your name, address, software serial number and version number (or a copy of your registration card). Contact your local Allen-Bradley sales office or authorized distributor.

RSLinx Software

RSLinx Software Requirements

Select the RSLinx Software Package

RSLinx software is a complete communication server providing plant-floor device connectivity for a wide variety of software applications. In addition, several open interfaces are provided for third-party HMI, data collection and analysis packages, and custom client-application software.

RSLinx software can be used with these operating systems:
Microsoft Windows Vista
Microsoft Windows XP
Microsoft Windows 2000
In most cases, RSLinx Lite software comes bundled with controller programming software packages.
You can also download RSLinx Lite for free from the Software Updates link on the Get
Support Now website at http://support.rockwellautomation.com

Cat. No.	RSLinx Products
Available only bundled with other products such as RSLogix software products	RSLinx Lite
9355-WABSNENE	RSLinx Single Node
9355-WABOEMENE	RSLinx OEM
9355-WABGWENE	RSLinx Gateway

RSNetWorx Software

RSNetWorx software is the configuration tool for your control network. With RSNetWorx software you can create a graphical representation of your network configuration and configure the parameters that define your network.

Use RSNetWorx software for:
ControlNet software to schedule network components. The software automatically calculates network bandwidth for the entire network, as well as the bandwidth used
by each network component. You must have RSNetWorx software to configure and
 DeviceNet scanner stores the configuration information and scan list.

EtherNet/IP software to configure EtherNet/IP devices using IP addresses or host

RSNetWorx Software Requirements

Select the RSNetWorx

 Software PackageRSNetWorx software can be used with these operating systems:
Microsoft Windows Vista
Microsoft Windows XP
Microsoft Windows 2000
In some cases, RSNetWorx software comes bundled with controller programming software packages.

	Description
$9357-$ CNETL3	RSNetWorx for ControlNet software
$9357-$ DNETL3	RSNetWorx for DeviceNet software
$9357-$ ENETL3	RSNetWorx for Ethernet/IP software
$9357-A N E T L 3$	RSNetWorx for ControlNet, Ethernet/IP and DeviceNet software
$9357-$ CNETMD3E	RSNetWorx for ControlNet software with MD, includes DriveExecutive Lite software
$9357-$ DNETMD3E	RSNetWorx for DeviceNet software with MD
$9357-E N E T M D 3 E$	RSNetWorx for EtherNet/IP software with MD
9	

Test and debug all of your ladder logic programs prior to commissioning and startup. RSLogix Emulate 500 software is a Microsoft Windows software package that emulates
one or more SLC 500 processors. You determine which ladder programs you want to run and RSLogix Emulate scans the ladder logic like an actual processor.

RSLogix Emulate 500 software may be used with Windows XP, and Windows 2000 (with Service Pack 2 or greater). It is included in the RSLogix 500 Professional Programming Software package.

Summary

Sample System Spreadsheet

Use a spreadsheet to record the amount and type of devices your SLC 500 system
requires. For example, this sample system:

Device	I/O Points Needed	Cat. No.	I/O Points per Module	Number of Modules
120 V ac Digital Inputs	73	1746-IA8	8	10
120 V ac Digital Output\$	225	1746-OA8	8	4
24 V dc Digital Inputs	43	1746-IB16	16	3
24 V dc Digital Outputs	17	1746-OB16	16	2
Isolated Relay Outputs	11	1746-OX8	8	2
$4 \ldots 20 \mathrm{~mA}$ Analog Inpu	s 7	1746-NI8	8	1
Remote I/O Scanner	N/A	1747-SN	N/A	1
Power Supply	N/A	1746-Px	N/A	3
SLC 500 Processor	N/A	1746-L5xx	N/A	1
Card Slot Fillers	N/A	1746-N2	N/A	3
SLC 500 Chassis	N/A	1746-A7	N/A	1
		1746-A10		2
PanelView Terminal	N/A	2711 series	N/A	N/A

System Selection Checklist

$\left.$| | Steps for Specifying an SLC 500 System | Remember to consider |
| :--- | :--- | :--- |
| | Select I/O Modules | module current and voltage considerations, electronic
 protection, input/output isolation
 IFMs or pre-wired cables |
| | Select Communication Modules/Devices | network communication requirements
 appropriate communication cables
 software requirements (i.e. RSNetWorx) |
| | Select an SLC 500 Processor | memory, I/O, speed, and programming requirements
 memory modules
 adapter sockets |
| | 5 | Select an SLC 500 Chassis | | chassis with slots for required modules, and for additional |
| :--- |
| modules to support future growth |
| card slot fillers (1746-N2) for open slots |
| interconnect cables | \right\rvert\,

Blank Power Supply Selection Worksheet

Procedure							
1. For each slot of the chassis that contains a module, list the slot number, catalog number of module, and its 5 V and 24 V maximum currents. Also include the power consumption of any peripheral							
devices that may be connected to the proces Chassis Number		Sol other than a DTAM, HHT, or PHC - the powMaximum Currents		el consumption of these devices is accountedChassis Number		Or in ine power consumption of the processor.Maximum Currents	
Slot Number	Cat. No.	5 V dc	24 V dc	Slot Number	Cat. No.	5 V dc	24 V dc
Peripheral Device				Peripheral De			
Peripheral Device				Peripheral De			
2. Add loading currents of all system devices 5 and 24 V dc to determine Total Current.		at		2. Add loading currents of all system devices and 24 V dc to determine Total Current.		a 5	
3. For 1746-P4 power supplies, calculate total power consumption of all system devices. If not using a 1746-P4, go to step							
Current		Multiply By	=Watts	Current		Multiply by	= Watts
Total Current at 5 V dc		5 V		Total Current at 5V dc		5 V	
Total Current at 24 V dc		24 V		Total Current at 24 V de		24 V	
User Current at 24 V dc		24 V		User Current at 24 V d¢		24 V	
Add the Watts values to determine Total Power (cannot exceed 70 W)				Add the Watts values to determine Total Power (cannot exceed 70 W)			
4. Choose the power supply from the list of catalog numbers below. Compare the Total Current required for the chassis with the Internal Current capacity of the power supplies. Be sure the Total Current							
Consumption for the chassis is tess than the		Internal Cunrent Capacity for the power supply Internal Current Capacity		for both 5 V and 24 V loads. Catalog Number		Internal Current Capacity	
		5 V dc	24 V dc			5 V dc	24 V dc
1746-P1		2.0 A	0.46 A	1746-P1		2.0 A	0.46 A
1746-P2		5.0 A	0.96 A	1746-P2		5.0 A	0.96 A
1746-P3		3.6 A	0.87 A	1746-P3		3.6 A	0.87 A
1746-P4 (See step 3)		10.0 A	2.88 A	1746-P4 (see		10.0 A	2.88 A
1746-P5		5.0 A	0.96 A	1746-P5		5.0 A	0.96 A
1746-P6		5.0 A	0.96 A	1746-P6		5.0 A	0.96 A
1747-P7*	12 V input	2.0 A	0.46 A	1747-P7*	12V Input	2.0 A	0.46 A
	24 V input	3.6 A	0.87 A		24V Input	3.6 A	0.87 A
Required Power Supply				Required Power Supply			

[^6]
Blank Heat Dissipation Worksheet

Procedure for calculating the total heat dissipation for the controller								
Procedure for calculating the total heat dissipation for the controller 1. Write the total watts dissipated by the processor, I/O, and specialty modules, and any peripheral devices attached to the proessor.								
prooessor. Chassis Number 1			Chassis Number 2			Chassis Number 3		
Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)
Peripheral Devige			Peripheral Device			Peripheral Device		
Peripheral Device			Peripheral Device			Peripheral Device		
2. Add the heat dissipation values together for your total chassis heat dissipation.			2. Add the heat dissipation values togeth er for your total chassis heat dissipation.			2. Add the heat dissipation values togeth er for your total chassis heat dissipation.		
3. Calculate the power supply loading for each chassis (minimum watts) for each device. *								
Chassis Number 1			Chassis Number 2			Chassis Number 3		
Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)	Slot	Cat. No.	Heat Dis (Watts)
User Power			User Power			User Power		
Peripheral Dev			Peripheral Dev			Peripheral Dev		
4. Add the heat dissipation values together for your power supply loading.			4. Add the heat dissipation values together for your power supply loading.			4. Add the heat dissipation values together for your power supply loading.		
5. Use the power supply loading (step 4) for each chassis and the graphs on page 76 to determine power supply dissipation.			5. Use the power supply loading (step 4) for each chassis and the graphs on page 76 to determine power supply dissipation.			5. Use the power supply loading (step 4) for each chassis and the graphs on page 76 to determine power supply dissipation.		
6. Add the chassis dissipation (step 2) to the power supply dissipation (step 5).			6. Add the chassis dissipation (step 2) to the power supply dissipation (step 5).			6. Add the chassis dissipation (step 2) to the power supply dissipation (step 5).		
7. Add the values together from step 6 across to the right.								
8. Convert the value from step 7 to BTUs/hr by multiplying the total heat dissipation of your controller by 3.414.								

* If you have a device connected to user power, multiply 24 V dc by the amount of current used by that device. Include user power in the total power supply loading.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Strect. Milwaukee, WI 53204 USA, Tel: (1) 414.382 .2000 , F2x: (1) 414.382 .4444
Farope/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2663 (0600 . Fax: (32) 26630640
Asia Pacific: Rockwell Auromation, Level 14, Core E, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: * Certified for Class 1, Division 2 hazardous location by C-UL only. Not CE marked.

[^1]: * The module accuracy for current inputs is 0.05%, and for voltage inputs is 0.1%.

[^2]: * The module-scan time is obtained by summing the channel-scan time for each enabled channel. For example, if 3 channels are enabled and the 50 Hz filter is selected, the module-scan time is $3 \times 65 \mathrm{~ms}=195 \mathrm{~ms}$.

[^3]:

[^4]: * See P7 current capacity chart on page 69.

[^5]: * 1747-UIC power consumption is less than 100 mA .

 Current for the 1761-NET-AIC and 1761-NET-ENI(W) must be supplied from an external 24 V dc source.

[^6]: * See P7 current capacity chart on page 69 .

