IC200ALG260

Analog Input Module, 12 Bit Voltage/Current 8 Channels

Analog input module IC200ALG260 provides an interface to 8 voltage inputs or 8 current inputs. The inputs are single-ended, with all inputs sharing a common return.

The module receives power from the backplane power supply. No external power source is required for module operation. Power for the user's transceivers must be supplied from an external source.

Intelligent processing for this module is performed by the CPU or NIU. The module provides 8 words of analog input data.

LED Indicators

The green INT PWR LED indicates the presence of internally-generated field power for the analog field-side circuits.

The green OK LED is on when backplane power is present to the module.

Diagnostics

The module reports a Loss of Internal Power fault for field-side circuits.

Configuration Parameters

Two jumpers on the carrier terminals can be used to configure voltage or current mode and unipolar or bipolar operation in voltage mode. One jumper selects either voltage or current operating mode. With this jumper connected, the module accepts current inputs in the 4 mA to 20 mA range. With no jumper installed the module accepts -10 VDC to +10 VDC inputs.

In voltage mode, a different jumper on the carrier can be used to select the 0 to 10VDC range.

| IC200ALG260 |
| ---: | ---: |
| Analog Input Module, 12 Bit Voltage/Current 8 Channels |

Module Specifications

Module Characteristics	
Channels	8 single ended, one group
Module ID	FFFF9008
Isolation: User input to logic (optical) and to frame ground Group to group Channel to channel	250VAC continuous; 1500VAC for 1 minute Not applicable None
LED indicators	INT PWR LED indicates internally-generated field power is present OK LED indicates backplane power is present
Backplane current consumption	5 V output: 130 mA maximum
External power supply	None
Thermal derating	None
Configuration parameters	Range select, Mode select (jumpers on carrier)
Diagnostics	Loss of Internal Power
Input Characteristics: Voltage Mode (default)	
Input voltage: Bipolar Unipolar	+/-10VDC (default) 0 to 10 V (configurable)
Input Impedance	126kOhms maximum
$\begin{aligned} & \text { Accuracy at: } \\ & 25 \text { degrees } \mathrm{C}^{\star} \\ & 0 \text { to } 60 \text { degrees } \mathrm{C} \end{aligned}$	$+/-0.3 \%$ typical of full scale, +/-0.5\% maximum of full scale +/-1\% maximum of full scale
Resolution: Bipolar mode: Unipolar mode:	$\begin{aligned} & 2.5 \mathrm{mV}=8 \text { counts } \\ & 2.5 \mathrm{mV}=8 \text { counts } \end{aligned}$
Filter response	5.0 ms
Update rate per module	0.4 ms
Common mode voltage	0 V
Channel-to-channel crosstalk rejection	30dB minimum
Input Characteristics: Current Mode	
Input current	4 to 20 mA
Input Impedance	200 Ohms maximum
$\begin{array}{\|l\|} \hline \text { Accuracy at: } \\ 25 \text { degrees } \mathrm{C}^{*} \\ 0 \text { to } 60 \text { degrees } \mathrm{C} \\ \hline \end{array}$	$+/-0.3 \%$ typical of full scale, $+/-0.5 \%$ maximum of full scale $+/-1 \%$ maximum of full scale
Resolution	$4 \mu \mathrm{~A}=8$ counts
Filter response	5 ms
Update rate per module	0.4 ms
Channel-to-channel crosstalk rejection	30dB minimum

* In the presence of severe RF interference, (IEC 1000-4-3, 10V/m), accuracy may be degraded to $+/-3 \%$.

IC200ALG260

Analog Input Module, 12 Bit Voltage/Current 8 Channels

Field Wiring

Number	Connection	Number	Connection
A1	V1	B1	V5
A2	I1	B2	I5
A3	Return (common)	B3	Return (common)
A4	V2	B4	V6
A5	I2	B5	I6
A6	Return (common)	B6	Return (common)
A7	V3	B7	V7
A8	I3	B8	I7
A9	Return (common)	B9	Return (common)
A10	V4	B10	V8
A11	I4	B11	I8
A12	Return (common)	B12	Return (common)
A13	JMP1-A	B13	No connection
A14	JMP1-B	B14	No connection
A15	JMP2-A	B15	No connection
A16	JMP2-B	B16	No connection
A17	NC	B17	No connection
A18	NC	B18	No connection

Note: All inputs are single-ended, and share a common return. Either voltage or current devices may be connected per channel (not both).

Wiring Connections for Carriers with Two Rows of Terminals IC200CHS002, 005 IC200CHSO12, 015	
Wiring Connections for Carriers with Three Rows of Terminals IC200CHS001, 022, 025 IC200CHS011	

Jumper Selections

Jumpers on JMP 1 and JMP 2 select voltage or current operation and voltage range. In current mode, JMP2 is ignored.

Jumper	Range
None	$+/-10 \mathrm{~V}$
1	$4-20 \mathrm{~mA}$
2	$0-10 \mathrm{~V}$
$1 \& 2$	Not recommended

Wiring Examples

An external source must be provided to power input transceivers.

Cable Shield Connections

If possible, the cable should be grounded at the source device. If that is not possible, the cable shield must be grounded at the source device. If that is not possible, the cable shield must be grounded at the I/O module. This can be done using an Auxiliary I/O Terminal (IC200TBM001, 002, or 005).

If the module is installed on a Terminal-style I/O Carrier (IC200CHS001, 002, or 005), shield connections can be made on an Auxiliary I/O Terminal that is attached to the I/O carrier.

If the module is installed on a Compact Terminal-style I/O Carrier (IC200CHS022, 025), shield connections can be made on an Auxiliary I/O Terminal that is mounted near the I/O carrier. Be sure to ground the Auxiliary I/O Terminal Strip if you plan to use it for this purpose.

If the module is installed on a Connector-style I/O Carrier (IC200CHS003), the cable shield can be connected directly to an Interposing Terminal (IC200CHS011, 012, 015). Be sure to ground the Interposing Terminal. It is recommended to use a shielded interposing cable as well between the Interposing Terminal and the Connector Base. A custom shielded cable can be made using the Connector kit (IC200ACC302). In addition, a custom shield braid can be wrapped around standard Interposing Cables (IC200CBL105, $110,120,230$). If this approach is used be sure to ground the braid.

IC200ALG260

Analog Input Module, 12 Bit Voltage/Current 8 Channels

Scaling

The graphs below show the relationship between the input voltage or current measured at the field terminals and the data that is output by the module.

Count and Input Current

The following equation can be used to calculate counts values:

$$
\text { Counts }=(\text { Current in mA }-4 m A) \times(32768 / 16.38 m A)
$$

For a change in the reported count value to be seen, input current must be increased by at least 2.5 mV . If the module receives an increase less than 2.5 mV , the previous count value is still reported. For example:

Current	Count
12.190 mA	16384
12.192 mA	16384
12.199 mA	16392

Count and Input Voltage

The following equations can be used to calculate counts values:

$$
\begin{array}{ll}
\text { Bipolar voltage: } & \text { Counts }=(\pm \text { Voltage In }) \times(3200) \\
\text { Unipolar voltage: } & \text { Counts }=(+ \text { Voltage In }) \times(3200)
\end{array}
$$

For a change in the reported count value to be seen, input current must be increased by at least 2.5 mV . If the module receives an increase less than 2.5 mV , the previous count value is still reported. For example:

Voltage	Count
5.1200 V	16384
5.1220 V	16384
5.1225 V	16392

