



# **REPAIR-OR-REPLACE**

## **DECISION GUIDE**

For Industrial Electronics
Drives • PLCs • HMIs •
Control Boards • Power Supplies

Unplanned electronic failures can halt production and force quick decisions. This guide helps maintenance and reliability teams determine whether to repair or replace a failed electronic component based on quantifiable data: cost, lead time, reliability, and repair viability. Use this worksheet during failure analysis or downtime reviews to record findings, compare options, and make a confident decision supported by evidence.

Work through the steps in order. Each step collects the data you need to reach a clear, defensible conclusion in Step 6. Fill in each field directly in this document or print and complete it by hand.

### STEP 1: IDENTIFY THE COMPONENT

List the failed equipment and its basic details.

| Component Type | Manufacturer/Model | Serial Number | Age (Years) | Application or<br>Process Criticality<br>(High / Medium /<br>Low) |
|----------------|--------------------|---------------|-------------|-------------------------------------------------------------------|
|                |                    |               |             |                                                                   |

## **STEP 2: ASSESS THE FAILURE**

Record the nature and severity of the failure.

| Question                                                                  | Response | Notes |
|---------------------------------------------------------------------------|----------|-------|
| Is the failure intermittent or total?                                     |          |       |
| Is there visible physical damage (burn marks, cracked board, corrosion)?  |          |       |
| Has this component failed before?                                         |          |       |
| Does the failure appear localized or systemic (affecting multiple units)? |          |       |

## **STEP 3: EVALUATE LEAD TIME**

Compare repair and replacement timelines to understand downtime impact. *If the repair turnaround is shorter than OEM delivery, repair is often the* best operational choice.

| Option                                 | Estimated<br>Lead Time (days) | Source/Supplier | Downtime Cost<br>Per Day |
|----------------------------------------|-------------------------------|-----------------|--------------------------|
| OEM Replacement                        |                               |                 |                          |
| Qualitrol International Repair Service |                               |                 |                          |

## **STEP 4: ESTIMATED COST**

Compare financial impact and warranty coverage.

Repairs are generally recommended when the repair cost is less than 60 percent of the replacement cost and downtime recovery is faster.

| Option                                 | Estimated Cost |
|----------------------------------------|----------------|
| OEM Replacement                        |                |
| Qualitrol International Repair Service |                |

## **STEP 5: CHECK REPAIR VIABILITY**

Answer the following questions to assess whether repair is technically feasible and reliable. "Yes" answers in the first four rows increase the likelihood that repair is the right choice. If environmental or repeated failures are noted, review the root cause before reinstalling the unit.

| Question                                                                 | Yes/No | Notes |
|--------------------------------------------------------------------------|--------|-------|
| Is the component still physically intact (no catastrophic board damage)? |        |       |
| Are replacement parts and schematics available?                          |        |       |
| Is the unit obsolete or no longer supported by the OEM?                  |        |       |
| Is the component critical to production or safety?                       |        |       |
| Are there known environmental causes (heat, vibration, contamination)?   |        |       |

### **STEP 6: MAKE THE DECISION**

Use the following logic table to interpret your findings from Steps 1–5.

| Condition                                                                                       | Recommended Action                | Rationale                                      |
|-------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|
| Replacement lead time is longer than repair lead time                                           | Repair                            | Faster return to service                       |
| Repair cost is less than 60 percent of replacement cost                                         | Repair                            | Economically justified                         |
| Component is obsolete or no longer supported                                                    | Repair                            | Only practical solution                        |
| Physical condition is repairable (no catastrophic damage)                                       | Repair                            | Refurbishment likely successful                |
| Failure has recurred within 6 months of prior repair                                            | Replace                           | Indicates degradation beyond economical repair |
| Replacement cost is less than<br>40 percent higher than repair<br>cost and downtime risk is low | Replace                           | New unit offers better long-term reliability   |
| Multiple identical components failing                                                           | Replace or investigate root cause | Possible system-wide issue                     |
| Internal board burned, cracked, or corroded beyond safe repair                                  | Replace                           | Repair not reliable or safe                    |

### **QUICK DECISION RULE**

#### Repair if:

- 1. The unit is not physically destroyed.
- 2. Repair costs less than 60 percent of replacement.
- 3. Repair turnaround is faster than OEM delivery.
- 4. The part is obsolete or critical to production.

#### Replace if:

- 1. Repair costs exceed 60 percent of replacement.
- 2. The unit has failed multiple times recently.
- 3. OEM replacement is readily available with short lead time.
- 4. The unit shows catastrophic or unsafe damage.

## STEP 7: FINAL DECISION SUMMARY

| Evaluation Category       | Summary / Notes                        |
|---------------------------|----------------------------------------|
| Lead Time Comparison      |                                        |
| Cost Comparison           |                                        |
| Criticality to Production |                                        |
| Repair Viability          |                                        |
| Final Action (circle one) | Repair I Replace I Send for Evaluation |
| Authorized By             |                                        |
| Date                      |                                        |



Qualitrol International (704) 702-6380 sales@qualitrol.com qualitrol.com